Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
60c50b4a
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
60c50b4a
编写于
2月 04, 2021
作者:
G
Guo Sheng
提交者:
GitHub
2月 04, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add inference support for BERT. (#5199)
* Add inference support for BERT. * Update inference support for BERT.
上级
c8aaa610
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
282 addition
and
0 deletion
+282
-0
PaddleNLP/examples/language_model/bert/README.md
PaddleNLP/examples/language_model/bert/README.md
+35
-0
PaddleNLP/examples/language_model/bert/export_model.py
PaddleNLP/examples/language_model/bert/export_model.py
+81
-0
PaddleNLP/examples/language_model/bert/prdict_glue.py
PaddleNLP/examples/language_model/bert/prdict_glue.py
+166
-0
未找到文件。
PaddleNLP/examples/language_model/bert/README.md
浏览文件 @
60c50b4a
...
...
@@ -138,3 +138,38 @@ python -u ./run_glue.py \
| QQP | Accuracy/F1 | 0.90581/0.87347 |
| MNLI | Matched acc/MisMatched acc | 0.84422/0.84825 |
| RTE | Accuracy | 0.711191 |
### 预测
在Fine-tuning完成后,我们可以使用如下方式导出希望用来预测的模型:
```
shell
python
-u
./export_model.py
\
--model_type
bert
\
--model_path
bert-base-uncased
\
--output_path
./infer_model/model
```
其中参数释义如下:
-
`model_type`
指示了模型类型,使用BERT模型时设置为bert即可。
-
`model_path`
表示训练模型的保存路径,与训练时的
`output_dir`
一致。
-
`output_path`
表示导出预测模型文件的前缀。保存时会添加后缀(
`pdiparams`
,
`pdiparams.info`
,
`pdmodel`
);除此之外,还会在
`model_path`
包含的目录下保存tokenizer相关内容。
然后按照如下的方式进行GLUE中的评测任务进行预测(基于Paddle的
[
Python预测API
](
https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0-rc1/guides/05_inference_deployment/inference/python_infer_cn.html
)
):
```
shell
python
-u
./predict_glue.py
\
--task_name
SST-2
\
--model_type
bert
\
--model_path
./infer_model/model
\
--batch_size
32
\
--max_seq_length
128
```
其中参数释义如下:
-
`task_name`
表示Fine-tuning的任务。
-
`model_type`
指示了模型类型,使用BERT模型时设置为bert即可。
-
`model_path`
表示预测模型文件的前缀,和上一步导出预测模型中的
`output_path`
一致。
-
`batch_size`
表示每个预测批次的样本数目。
-
`max_seq_length`
表示最大句子长度,超过该长度将被截断。
PaddleNLP/examples/language_model/bert/export_model.py
0 → 100644
浏览文件 @
60c50b4a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
argparse
import
os
import
paddle
from
run_glue
import
MODEL_CLASSES
def
parse_args
():
parser
=
argparse
.
ArgumentParser
()
# Required parameters
parser
.
add_argument
(
"--model_type"
,
default
=
None
,
type
=
str
,
required
=
True
,
help
=
"Model type selected in the list: "
+
", "
.
join
(
MODEL_CLASSES
.
keys
()),
)
parser
.
add_argument
(
"--model_path"
,
default
=
None
,
type
=
str
,
required
=
True
,
help
=
"Path of the trained model to be exported."
,
)
parser
.
add_argument
(
"--output_path"
,
default
=
None
,
type
=
str
,
required
=
True
,
help
=
"The output file prefix used to save the exported inference model."
,
)
args
=
parser
.
parse_args
()
return
args
def
main
():
args
=
parse_args
()
args
.
model_type
=
args
.
model_type
.
lower
()
model_class
,
tokenizer_class
=
MODEL_CLASSES
[
args
.
model_type
]
# build model and load trained parameters
model
=
model_class
.
from_pretrained
(
args
.
model_path
)
# switch to eval model
model
.
eval
()
# convert to static graph with specific input description
model
=
paddle
.
jit
.
to_static
(
model
,
input_spec
=
[
paddle
.
static
.
InputSpec
(
shape
=
[
None
,
None
],
dtype
=
"int64"
),
# input_ids
paddle
.
static
.
InputSpec
(
shape
=
[
None
,
None
],
dtype
=
"int64"
)
# segment_ids
])
# save converted static graph model
paddle
.
jit
.
save
(
model
,
args
.
output_path
)
# also save tokenizer for inference usage
tokenizer
=
tokenizer_class
.
from_pretrained
(
args
.
model_path
)
tokenizer
.
save_pretrained
(
os
.
path
.
dirname
(
args
.
output_path
))
if
__name__
==
"__main__"
:
main
()
PaddleNLP/examples/language_model/bert/prdict_glue.py
0 → 100644
浏览文件 @
60c50b4a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
argparse
import
os
from
functools
import
partial
import
paddle
from
paddle
import
inference
from
paddlenlp.data
import
Stack
,
Tuple
,
Pad
from
run_glue
import
convert_example
,
TASK_CLASSES
,
MODEL_CLASSES
def
parse_args
():
parser
=
argparse
.
ArgumentParser
()
# Required parameters
parser
.
add_argument
(
"--task_name"
,
default
=
None
,
type
=
str
,
required
=
True
,
help
=
"The name of the task to perform predict, selected in the list: "
+
", "
.
join
(
TASK_CLASSES
.
keys
()),
)
parser
.
add_argument
(
"--model_type"
,
default
=
None
,
type
=
str
,
required
=
True
,
help
=
"Model type selected in the list: "
+
", "
.
join
(
MODEL_CLASSES
.
keys
()),
)
parser
.
add_argument
(
"--model_path"
,
default
=
None
,
type
=
str
,
required
=
True
,
help
=
"The path prefix of inference model to be used."
,
)
parser
.
add_argument
(
"--select_device"
,
default
=
"gpu"
,
choices
=
[
"gpu"
,
"cpu"
,
"xpu"
],
help
=
"Device selected for inference."
,
)
parser
.
add_argument
(
"--batch_size"
,
default
=
32
,
type
=
int
,
help
=
"Batch size for predict."
,
)
parser
.
add_argument
(
"--max_seq_length"
,
default
=
128
,
type
=
int
,
help
=
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
,
)
args
=
parser
.
parse_args
()
return
args
class
Predictor
(
object
):
def
__init__
(
self
,
predictor
,
input_handles
,
output_handles
):
self
.
predictor
=
predictor
self
.
input_handles
=
input_handles
self
.
output_handles
=
output_handles
@
classmethod
def
create_predictor
(
cls
,
args
):
config
=
paddle
.
inference
.
Config
(
args
.
model_path
+
".pdmodel"
,
args
.
model_path
+
".pdiparams"
)
if
args
.
select_device
==
"gpu"
:
# set GPU configs accordingly
config
.
enable_use_gpu
(
100
,
0
)
elif
args
.
select_device
==
"cpu"
:
# set CPU configs accordingly,
# such as enable_mkldnn, set_cpu_math_library_num_threads
config
.
disable_gpu
()
elif
args
.
select_device
==
"xpu"
:
# set XPU configs accordingly
config
.
enable_xpu
(
100
)
config
.
switch_use_feed_fetch_ops
(
False
)
predictor
=
paddle
.
inference
.
create_predictor
(
config
)
input_handles
=
[
predictor
.
get_input_handle
(
name
)
for
name
in
predictor
.
get_input_names
()
]
output_handles
=
[
predictor
.
get_input_handle
(
name
)
for
name
in
predictor
.
get_output_names
()
]
return
cls
(
predictor
,
input_handles
,
output_handles
)
def
predict_batch
(
self
,
data
):
for
input_field
,
input_handle
in
zip
(
data
,
self
.
input_handles
):
input_handle
.
copy_from_cpu
(
input_field
.
numpy
(
)
if
isinstance
(
input_field
,
paddle
.
Tensor
)
else
input_field
)
self
.
predictor
.
run
()
output
=
[
output_handle
.
copy_to_cpu
()
for
output_handle
in
self
.
output_handles
]
return
output
def
predict
(
self
,
dataset
,
collate_fn
,
batch_size
=
1
):
batch_sampler
=
paddle
.
io
.
BatchSampler
(
dataset
,
batch_size
=
batch_size
,
shuffle
=
False
)
data_loader
=
paddle
.
io
.
DataLoader
(
dataset
=
dataset
,
batch_sampler
=
batch_sampler
,
collate_fn
=
collate_fn
,
num_workers
=
0
,
return_list
=
True
)
outputs
=
[]
for
data
in
data_loader
:
output
=
self
.
predict_batch
(
data
)
outputs
.
append
(
output
)
return
outputs
def
main
():
args
=
parse_args
()
predictor
=
Predictor
.
create_predictor
(
args
)
args
.
task_name
=
args
.
task_name
.
lower
()
dataset_class
,
metric_class
=
TASK_CLASSES
[
args
.
task_name
]
args
.
model_type
=
args
.
model_type
.
lower
()
model_class
,
tokenizer_class
=
MODEL_CLASSES
[
args
.
model_type
]
dataset
=
dataset_class
.
get_datasets
(
"test"
)
tokenizer
=
tokenizer_class
.
from_pretrained
(
os
.
path
.
dirname
(
args
.
model_path
))
transform_fn
=
partial
(
convert_example
,
tokenizer
=
tokenizer
,
label_list
=
dataset
.
get_labels
(),
max_seq_length
=
args
.
max_seq_length
,
is_test
=
True
)
batchify_fn
=
lambda
samples
,
fn
=
Tuple
(
Pad
(
axis
=
0
,
pad_val
=
tokenizer
.
pad_token_id
),
# input
Pad
(
axis
=
0
,
pad_val
=
tokenizer
.
pad_token_id
),
# segment
Stack
(),
# length
):
[
data
for
i
,
data
in
enumerate
(
fn
(
samples
))
if
i
!=
2
]
dataset
=
dataset
.
apply
(
transform_fn
)
predictor
.
predict
(
dataset
,
batch_size
=
args
.
batch_size
,
collate_fn
=
batchify_fn
)
if
__name__
==
"__main__"
:
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录