未验证 提交 60c50b4a 编写于 作者: G Guo Sheng 提交者: GitHub

Add inference support for BERT. (#5199)

* Add inference support for BERT.

* Update inference support for BERT.
上级 c8aaa610
......@@ -138,3 +138,38 @@ python -u ./run_glue.py \
| QQP | Accuracy/F1 | 0.90581/0.87347 |
| MNLI | Matched acc/MisMatched acc | 0.84422/0.84825 |
| RTE | Accuracy | 0.711191 |
### 预测
在Fine-tuning完成后,我们可以使用如下方式导出希望用来预测的模型:
```shell
python -u ./export_model.py \
--model_type bert \
--model_path bert-base-uncased \
--output_path ./infer_model/model
```
其中参数释义如下:
- `model_type` 指示了模型类型,使用BERT模型时设置为bert即可。
- `model_path` 表示训练模型的保存路径,与训练时的`output_dir`一致。
- `output_path` 表示导出预测模型文件的前缀。保存时会添加后缀(`pdiparams``pdiparams.info``pdmodel`);除此之外,还会在`model_path`包含的目录下保存tokenizer相关内容。
然后按照如下的方式进行GLUE中的评测任务进行预测(基于Paddle的[Python预测API](https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0-rc1/guides/05_inference_deployment/inference/python_infer_cn.html)):
```shell
python -u ./predict_glue.py \
--task_name SST-2 \
--model_type bert \
--model_path ./infer_model/model \
--batch_size 32 \
--max_seq_length 128
```
其中参数释义如下:
- `task_name` 表示Fine-tuning的任务。
- `model_type` 指示了模型类型,使用BERT模型时设置为bert即可。
- `model_path` 表示预测模型文件的前缀,和上一步导出预测模型中的`output_path`一致。
- `batch_size` 表示每个预测批次的样本数目。
- `max_seq_length` 表示最大句子长度,超过该长度将被截断。
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import paddle
from run_glue import MODEL_CLASSES
def parse_args():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_type",
default=None,
type=str,
required=True,
help="Model type selected in the list: " +
", ".join(MODEL_CLASSES.keys()),
)
parser.add_argument(
"--model_path",
default=None,
type=str,
required=True,
help="Path of the trained model to be exported.",
)
parser.add_argument(
"--output_path",
default=None,
type=str,
required=True,
help=
"The output file prefix used to save the exported inference model.",
)
args = parser.parse_args()
return args
def main():
args = parse_args()
args.model_type = args.model_type.lower()
model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
# build model and load trained parameters
model = model_class.from_pretrained(args.model_path)
# switch to eval model
model.eval()
# convert to static graph with specific input description
model = paddle.jit.to_static(
model,
input_spec=[
paddle.static.InputSpec(shape=[None, None],
dtype="int64"), # input_ids
paddle.static.InputSpec(shape=[None, None],
dtype="int64") # segment_ids
])
# save converted static graph model
paddle.jit.save(model, args.output_path)
# also save tokenizer for inference usage
tokenizer = tokenizer_class.from_pretrained(args.model_path)
tokenizer.save_pretrained(os.path.dirname(args.output_path))
if __name__ == "__main__":
main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from functools import partial
import paddle
from paddle import inference
from paddlenlp.data import Stack, Tuple, Pad
from run_glue import convert_example, TASK_CLASSES, MODEL_CLASSES
def parse_args():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task_name",
default=None,
type=str,
required=True,
help="The name of the task to perform predict, selected in the list: " +
", ".join(TASK_CLASSES.keys()),
)
parser.add_argument(
"--model_type",
default=None,
type=str,
required=True,
help="Model type selected in the list: " +
", ".join(MODEL_CLASSES.keys()),
)
parser.add_argument(
"--model_path",
default=None,
type=str,
required=True,
help="The path prefix of inference model to be used.",
)
parser.add_argument(
"--select_device",
default="gpu",
choices=["gpu", "cpu", "xpu"],
help="Device selected for inference.",
)
parser.add_argument(
"--batch_size",
default=32,
type=int,
help="Batch size for predict.",
)
parser.add_argument(
"--max_seq_length",
default=128,
type=int,
help=
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
args = parser.parse_args()
return args
class Predictor(object):
def __init__(self, predictor, input_handles, output_handles):
self.predictor = predictor
self.input_handles = input_handles
self.output_handles = output_handles
@classmethod
def create_predictor(cls, args):
config = paddle.inference.Config(args.model_path + ".pdmodel",
args.model_path + ".pdiparams")
if args.select_device == "gpu":
# set GPU configs accordingly
config.enable_use_gpu(100, 0)
elif args.select_device == "cpu":
# set CPU configs accordingly,
# such as enable_mkldnn, set_cpu_math_library_num_threads
config.disable_gpu()
elif args.select_device == "xpu":
# set XPU configs accordingly
config.enable_xpu(100)
config.switch_use_feed_fetch_ops(False)
predictor = paddle.inference.create_predictor(config)
input_handles = [
predictor.get_input_handle(name)
for name in predictor.get_input_names()
]
output_handles = [
predictor.get_input_handle(name)
for name in predictor.get_output_names()
]
return cls(predictor, input_handles, output_handles)
def predict_batch(self, data):
for input_field, input_handle in zip(data, self.input_handles):
input_handle.copy_from_cpu(input_field.numpy(
) if isinstance(input_field, paddle.Tensor) else input_field)
self.predictor.run()
output = [
output_handle.copy_to_cpu() for output_handle in self.output_handles
]
return output
def predict(self, dataset, collate_fn, batch_size=1):
batch_sampler = paddle.io.BatchSampler(dataset,
batch_size=batch_size,
shuffle=False)
data_loader = paddle.io.DataLoader(dataset=dataset,
batch_sampler=batch_sampler,
collate_fn=collate_fn,
num_workers=0,
return_list=True)
outputs = []
for data in data_loader:
output = self.predict_batch(data)
outputs.append(output)
return outputs
def main():
args = parse_args()
predictor = Predictor.create_predictor(args)
args.task_name = args.task_name.lower()
dataset_class, metric_class = TASK_CLASSES[args.task_name]
args.model_type = args.model_type.lower()
model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
dataset = dataset_class.get_datasets("test")
tokenizer = tokenizer_class.from_pretrained(os.path.dirname(
args.model_path))
transform_fn = partial(convert_example,
tokenizer=tokenizer,
label_list=dataset.get_labels(),
max_seq_length=args.max_seq_length,
is_test=True)
batchify_fn = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=tokenizer.pad_token_id), # input
Pad(axis=0, pad_val=tokenizer.pad_token_id), # segment
Stack(), # length
): [data for i, data in enumerate(fn(samples)) if i != 2]
dataset = dataset.apply(transform_fn)
predictor.predict(dataset,
batch_size=args.batch_size,
collate_fn=batchify_fn)
if __name__ == "__main__":
main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册