Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
5e574d41
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
223
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5e574d41
编写于
10月 29, 2020
作者:
Z
zhang wenhui
提交者:
GitHub
10月 29, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update 2.0 api (#4921)
* update api 1.8 * fix paddlerec readme * fix readme * update 2.0 api * fix, test=develop
上级
9bf27322
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
82 addition
and
81 deletion
+82
-81
PaddleRec/ctr/deepfm_dygraph/README.md
PaddleRec/ctr/deepfm_dygraph/README.md
+2
-3
PaddleRec/ctr/deepfm_dygraph/infer.py
PaddleRec/ctr/deepfm_dygraph/infer.py
+65
-64
PaddleRec/ctr/deepfm_dygraph/network.py
PaddleRec/ctr/deepfm_dygraph/network.py
+15
-14
未找到文件。
PaddleRec/ctr/deepfm_dygraph/README.md
浏览文件 @
5e574d41
# DeepFM动态图
以下是本例的简要目录结构及说明:
...
...
@@ -65,9 +64,9 @@ CUDA_VISIBLE_DEVICES=0 python infer.py --checkpoint=models/epoch_0
## 效果
```
text
test auc of epoch 0 is 0.
802877
test auc of epoch 0 is 0.
78+
```
第一轮数据训练结束后,test auc为0.
802877
。
第一轮数据训练结束后,test auc为0.
78+
。
继续训练模型易出现过拟合现象,可以通过评估模型选择效果最好的模型作为最终训练结果。
PaddleRec/ctr/deepfm_dygraph/infer.py
浏览文件 @
5e574d41
...
...
@@ -3,8 +3,7 @@ from __future__ import print_function
import
os
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph.base
import
to_variable
import
paddle
import
logging
import
time
...
...
@@ -19,72 +18,74 @@ logger = logging.getLogger(__name__)
def
infer
(
args
):
if
args
.
use_gpu
:
place
=
fluid
.
CUDAPlace
(
0
)
place
=
paddle
.
CUDAPlace
(
0
)
else
:
place
=
fluid
.
CPUPlace
()
with
fluid
.
dygraph
.
guard
(
place
):
deepfm
=
DeepFM
(
args
)
test_filelist
=
[
os
.
path
.
join
(
args
.
test_data_dir
,
x
)
for
x
in
os
.
listdir
(
args
.
test_data_dir
)
]
test_reader
=
data_reader
.
data_reader
(
args
.
batch_size
,
test_filelist
,
args
.
feat_dict
,
data_type
=
"test"
)
# load model
if
args
.
checkpoint
:
model_dict
,
optimizer_dict
=
fluid
.
dygraph
.
load_dygraph
(
args
.
checkpoint
)
deepfm
.
set_dict
(
model_dict
)
logger
.
info
(
"load model {} finished."
.
format
(
args
.
checkpoint
))
else
:
logger
.
error
(
"no model to load!"
)
logger
.
error
(
"please set model to load in --checkpoint first."
)
exit
(
1
)
def
eval
():
deepfm
.
eval
()
logger
.
info
(
"start eval model."
)
total_step
=
0
batch_begin
=
time
.
time
()
auc_metric_test
=
fluid
.
metrics
.
Auc
(
"ROC"
)
for
data
in
test_reader
():
total_step
+=
1
raw_feat_idx
,
raw_feat_value
,
label
=
zip
(
*
data
)
raw_feat_idx
=
np
.
array
(
raw_feat_idx
,
dtype
=
np
.
int64
)
raw_feat_value
=
np
.
array
(
raw_feat_value
,
dtype
=
np
.
float32
)
label
=
np
.
array
(
label
,
dtype
=
np
.
int64
)
raw_feat_idx
,
raw_feat_value
,
label
=
[
to_variable
(
i
)
for
i
in
[
raw_feat_idx
,
raw_feat_value
,
label
]
]
predict
=
deepfm
(
raw_feat_idx
,
raw_feat_value
,
label
)
# for auc
predict_2d
=
fluid
.
layers
.
concat
([
1
-
predict
,
predict
],
1
)
auc_metric_test
.
update
(
preds
=
predict_2d
.
numpy
(),
labels
=
label
.
numpy
())
if
total_step
>
0
and
total_step
%
100
==
0
:
logger
.
info
(
"TEST --> batch: {} auc: {:.6f} speed: {:.2f} ins/s"
.
format
(
total_step
,
auc_metric_test
.
eval
(),
100
*
args
.
batch_size
/
(
time
.
time
()
-
batch_begin
)))
batch_begin
=
time
.
time
()
logger
.
info
(
"test auc is %.6f"
%
auc_metric_test
.
eval
())
begin
=
time
.
time
()
eval
()
logger
.
info
(
"test finished, cost %f s"
%
(
time
.
time
()
-
begin
))
place
=
paddle
.
CPUPlace
()
paddle
.
disable_static
(
place
)
deepfm
=
DeepFM
(
args
)
test_filelist
=
[
os
.
path
.
join
(
args
.
test_data_dir
,
x
)
for
x
in
os
.
listdir
(
args
.
test_data_dir
)
]
test_reader
=
data_reader
.
data_reader
(
args
.
batch_size
,
test_filelist
,
args
.
feat_dict
,
data_type
=
"test"
)
# load model
if
args
.
checkpoint
:
model_dict
,
optimizer_dict
=
paddle
.
fluid
.
dygraph
.
load_dygraph
(
args
.
checkpoint
)
deepfm
.
set_dict
(
model_dict
)
logger
.
info
(
"load model {} finished."
.
format
(
args
.
checkpoint
))
else
:
logger
.
error
(
"no model to load!"
)
logger
.
error
(
"please set model to load in --checkpoint first."
)
exit
(
1
)
def
eval
():
deepfm
.
eval
()
logger
.
info
(
"start eval model."
)
total_step
=
0
batch_begin
=
time
.
time
()
auc_metric_test
=
paddle
.
fluid
.
metrics
.
Auc
(
"ROC"
)
for
data
in
test_reader
():
total_step
+=
1
raw_feat_idx
,
raw_feat_value
,
label
=
zip
(
*
data
)
raw_feat_idx
=
np
.
array
(
raw_feat_idx
,
dtype
=
np
.
int64
)
raw_feat_value
=
np
.
array
(
raw_feat_value
,
dtype
=
np
.
float32
)
label
=
np
.
array
(
label
,
dtype
=
np
.
int64
)
raw_feat_idx
,
raw_feat_value
,
label
=
[
paddle
.
to_tensor
(
data
=
i
,
dtype
=
None
,
place
=
None
,
stop_gradient
=
True
)
for
i
in
[
raw_feat_idx
,
raw_feat_value
,
label
]
]
predict
=
deepfm
(
raw_feat_idx
,
raw_feat_value
,
label
)
# for auc
predict_2d
=
paddle
.
concat
(
x
=
[
1
-
predict
,
predict
],
axis
=
1
)
auc_metric_test
.
update
(
preds
=
predict_2d
.
numpy
(),
labels
=
label
.
numpy
())
if
total_step
>
0
and
total_step
%
100
==
0
:
logger
.
info
(
"TEST --> batch: {} auc: {:.6f} speed: {:.2f} ins/s"
.
format
(
total_step
,
auc_metric_test
.
eval
(),
100
*
args
.
batch_size
/
(
time
.
time
()
-
batch_begin
)))
batch_begin
=
time
.
time
()
logger
.
info
(
"test auc is %.6f"
%
auc_metric_test
.
eval
())
begin
=
time
.
time
()
eval
()
logger
.
info
(
"test finished, cost %f s"
%
(
time
.
time
()
-
begin
))
paddle
.
enable_static
()
if
__name__
==
'__main__'
:
args
=
utils
.
parse_args
()
utils
.
print_arguments
(
args
)
...
...
PaddleRec/ctr/deepfm_dygraph/network.py
浏览文件 @
5e574d41
...
...
@@ -2,7 +2,6 @@ import math
import
paddle
class
DeepFM
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
,
args
):
super
(
DeepFM
,
self
).
__init__
()
...
...
@@ -13,8 +12,8 @@ class DeepFM(paddle.nn.Layer):
self
.
dnn
=
DNN
(
args
)
def
forward
(
self
,
raw_feat_idx
,
raw_feat_value
,
label
):
feat_idx
=
paddle
.
fluid
.
layers
.
reshape
(
raw_feat_idx
,
[
-
1
,
1
])
# (None * num_field) * 1
feat_idx
=
paddle
.
fluid
.
layers
.
reshape
(
raw_feat_idx
,
[
-
1
,
1
])
# (None * num_field) * 1
feat_value
=
paddle
.
fluid
.
layers
.
reshape
(
raw_feat_value
,
[
-
1
,
self
.
args
.
num_field
,
1
])
# None * num_field * 1
...
...
@@ -23,7 +22,8 @@ class DeepFM(paddle.nn.Layer):
feat_value
)
y_dnn
=
self
.
dnn
(
feat_embeddings
)
predict
=
paddle
.
nn
.
functional
.
sigmoid
(
y_first_order
+
y_second_order
+
y_dnn
)
predict
=
paddle
.
nn
.
functional
.
sigmoid
(
y_first_order
+
y_second_order
+
y_dnn
)
return
predict
...
...
@@ -39,7 +39,7 @@ class FM(paddle.nn.Layer):
padding_idx
=
0
,
param_attr
=
paddle
.
ParamAttr
(
initializer
=
paddle
.
nn
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
self
.
init_value_
),
mean
=
0.0
,
std
=
self
.
init_value_
),
regularizer
=
paddle
.
fluid
.
regularizer
.
L1DecayRegularizer
(
self
.
args
.
reg
)))
self
.
embedding
=
paddle
.
fluid
.
dygraph
.
nn
.
Embedding
(
...
...
@@ -48,8 +48,8 @@ class FM(paddle.nn.Layer):
padding_idx
=
0
,
param_attr
=
paddle
.
ParamAttr
(
initializer
=
paddle
.
nn
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
s
cale
=
self
.
init_value_
/
mean
=
0.0
,
s
td
=
self
.
init_value_
/
math
.
sqrt
(
float
(
self
.
args
.
embedding_size
)))))
def
forward
(
self
,
feat_idx
,
feat_value
):
...
...
@@ -69,16 +69,16 @@ class FM(paddle.nn.Layer):
feat_embeddings
=
feat_embeddings
*
feat_value
# None * num_field * embedding_size
# sum_square part
summed_features_emb
=
paddle
.
reduce_sum
(
feat_embeddings
,
1
)
# None * embedding_size
summed_features_emb
=
paddle
.
reduce_sum
(
feat_embeddings
,
1
)
# None * embedding_size
summed_features_emb_square
=
paddle
.
square
(
summed_features_emb
)
# None * embedding_size
# square_sum part
squared_features_emb
=
paddle
.
square
(
feat_embeddings
)
# None * num_field * embedding_size
squared_sum_features_emb
=
paddle
.
reduce_sum
(
squared_features_emb
,
1
)
# None * embedding_size
squared_sum_features_emb
=
paddle
.
reduce_sum
(
squared_features_emb
,
1
)
# None * embedding_size
y_second_order
=
0.5
*
paddle
.
reduce_sum
(
summed_features_emb_square
-
squared_sum_features_emb
,
...
...
@@ -93,7 +93,8 @@ class DNN(paddle.nn.Layer):
super
(
DNN
,
self
).
__init__
()
self
.
args
=
args
self
.
init_value_
=
0.1
sizes
=
[
self
.
args
.
num_field
*
self
.
args
.
embedding_size
]
+
self
.
args
.
layer_sizes
+
[
1
]
sizes
=
[
self
.
args
.
num_field
*
self
.
args
.
embedding_size
]
+
self
.
args
.
layer_sizes
+
[
1
]
acts
=
[
self
.
args
.
act
for
_
in
range
(
len
(
self
.
args
.
layer_sizes
))]
+
[
None
]
w_scales
=
[
...
...
@@ -107,10 +108,10 @@ class DNN(paddle.nn.Layer):
out_features
=
sizes
[
i
+
1
],
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
paddle
.
nn
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
w_scales
[
i
])),
mean
=
0.0
,
std
=
w_scales
[
i
])),
bias_attr
=
paddle
.
ParamAttr
(
initializer
=
paddle
.
nn
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
self
.
init_value_
)))
mean
=
0.0
,
std
=
self
.
init_value_
)))
#linear = getattr(paddle.nn.functional, acts[i])(linear) if acts[i] else linear
if
acts
[
i
]
==
'relu'
:
act
=
paddle
.
nn
.
ReLU
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录