Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
59132ca3
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
59132ca3
编写于
11月 07, 2019
作者:
R
root
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add lstm net
上级
e693a685
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
203 addition
and
5 deletion
+203
-5
dygraph/sentiment/main.py
dygraph/sentiment/main.py
+35
-5
dygraph/sentiment/nets.py
dygraph/sentiment/nets.py
+168
-0
未找到文件。
dygraph/sentiment/main.py
浏览文件 @
59132ca3
...
...
@@ -28,7 +28,7 @@ model_g = ArgumentGroup(parser, "model", "model configuration and paths.")
model_g
.
add_arg
(
"checkpoints"
,
str
,
"checkpoints"
,
"Path to save checkpoints"
)
train_g
=
ArgumentGroup
(
parser
,
"training"
,
"training options."
)
train_g
.
add_arg
(
"epoch"
,
int
,
10
,
"Number of epoches for training."
)
train_g
.
add_arg
(
"epoch"
,
int
,
10
0
,
"Number of epoches for training."
)
train_g
.
add_arg
(
"save_steps"
,
int
,
1000
,
"The steps interval to save checkpoints."
)
train_g
.
add_arg
(
"validation_steps"
,
int
,
200
,
...
...
@@ -139,10 +139,18 @@ def train():
elif
args
.
model_type
==
'bow_net'
:
model
=
nets
.
BOW
(
"bow_net"
,
args
.
vocab_size
,
args
.
batch_size
,
args
.
padding_size
)
elif
args
.
model_type
==
'lstm_net'
:
model
=
nets
.
LSTM
(
"lstm_net"
,
args
.
vocab_size
,
args
.
batch_size
,
args
.
padding_size
)
sgd_optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
args
.
lr
)
steps
=
0
total_cost
,
total_acc
,
total_num_seqs
=
[],
[],
[]
last_hidden
=
None
last_cell
=
None
init_hidden_data
=
np
.
zeros
(
(
1
,
args
.
batch_size
,
128
*
4
),
dtype
=
'float32'
)
init_cell_data
=
np
.
zeros
(
(
1
,
args
.
batch_size
,
128
*
4
),
dtype
=
'float32'
)
for
eop
in
range
(
args
.
epoch
):
time_begin
=
time
.
time
()
for
batch_id
,
data
in
enumerate
(
train_data_generator
()):
...
...
@@ -166,7 +174,16 @@ def train():
args
.
batch_size
,
1
))
model
.
train
()
avg_cost
,
prediction
,
acc
=
model
(
doc
,
label
)
if
args
.
model_type
==
'lstm_net'
:
init_hidden
=
to_variable
(
init_hidden_data
)
init_cell
=
to_variable
(
init_cell_data
)
avg_cost
,
prediction
,
acc
,
last_hidden
,
last_cell
=
model
(
doc
,
init_hidden
,
init_cell
,
label
)
init_hidden_data
=
last_hidden
.
numpy
()
init_cell_data
=
last_cell
.
numpy
()
else
:
avg_cost
,
prediction
,
acc
=
model
(
doc
,
label
)
avg_cost
.
backward
()
np_mask
=
(
doc
.
numpy
()
!=
args
.
vocab_size
).
astype
(
'int32'
)
word_num
=
np
.
sum
(
np_mask
)
...
...
@@ -206,8 +223,18 @@ def train():
np
.
array
([
x
[
1
]
for
x
in
eval_data
]).
astype
(
'int64'
).
reshape
(
args
.
batch_size
,
1
))
eval_doc
=
to_variable
(
eval_np_doc
.
reshape
(
-
1
,
1
))
eval_avg_cost
,
eval_prediction
,
eval_acc
=
model
(
eval_doc
,
eval_label
)
if
args
.
model_type
==
'lstm_net'
:
init_hidden
=
to_variable
(
init_hidden_data
)
init_cell
=
to_variable
(
init_cell_data
)
eval_avg_cost
,
eval_prediction
,
eval_acc
,
last_hidden
,
last_cell
=
model
(
eval_doc
,
init_hidden
,
init_cell
,
eval_label
)
init_hidden_data
=
to_variable
(
last_hidden
.
numpy
())
init_cell_data
=
to_variable
(
last_cell
.
numpy
())
else
:
eval_avg_cost
,
eval_prediction
,
eval_acc
=
model
(
eval_doc
,
eval_label
)
eval_np_mask
=
(
eval_np_doc
!=
args
.
vocab_size
).
astype
(
'int32'
)
...
...
@@ -266,6 +293,9 @@ def infer():
elif
args
.
model_type
==
'bow_net'
:
model_infer
=
nets
.
BOW
(
"bow_net"
,
args
.
vocab_size
,
args
.
batch_size
,
args
.
padding_size
)
elif
args
.
model_type
==
'lstm_net'
:
model_infer
=
nets
.
LSTM
(
"lstm_net"
,
args
.
vocab_size
,
args
.
batch_size
,
args
.
padding_size
)
print
(
'Do inferring ...... '
)
total_acc
,
total_num_seqs
=
[],
[]
...
...
dygraph/sentiment/nets.py
浏览文件 @
59132ca3
...
...
@@ -17,6 +17,110 @@ from paddle.fluid.dygraph.base import to_variable
import
numpy
as
np
class
SimpleLSTMRNN
(
fluid
.
Layer
):
def
__init__
(
self
,
name_scope
,
hidden_size
,
num_steps
,
num_layers
=
2
,
init_scale
=
0.1
,
dropout
=
None
):
super
(
SimpleLSTMRNN
,
self
).
__init__
(
name_scope
)
self
.
_hidden_size
=
hidden_size
self
.
_num_layers
=
num_layers
self
.
_init_scale
=
init_scale
self
.
_dropout
=
dropout
self
.
_input
=
None
self
.
_num_steps
=
num_steps
self
.
cell_array
=
[]
self
.
hidden_array
=
[]
self
.
weight_1_arr
=
[]
self
.
weight_2_arr
=
[]
self
.
bias_arr
=
[]
self
.
mask_array
=
[]
for
i
in
range
(
self
.
_num_layers
):
weight_1
=
self
.
create_parameter
(
attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
_init_scale
,
high
=
self
.
_init_scale
)),
shape
=
[
self
.
_hidden_size
*
2
,
self
.
_hidden_size
*
4
],
dtype
=
"float32"
,
default_initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
_init_scale
,
high
=
self
.
_init_scale
))
self
.
weight_1_arr
.
append
(
self
.
add_parameter
(
'w_%d'
%
i
,
weight_1
))
bias_1
=
self
.
create_parameter
(
attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
_init_scale
,
high
=
self
.
_init_scale
)),
shape
=
[
self
.
_hidden_size
*
4
],
dtype
=
"float32"
,
default_initializer
=
fluid
.
initializer
.
Constant
(
0.0
))
self
.
bias_arr
.
append
(
self
.
add_parameter
(
'b_%d'
%
i
,
bias_1
))
def
forward
(
self
,
input_embedding
,
init_hidden
=
None
,
init_cell
=
None
):
self
.
cell_array
=
[]
self
.
hidden_array
=
[]
for
i
in
range
(
self
.
_num_layers
):
pre_hidden
=
fluid
.
layers
.
slice
(
init_hidden
,
axes
=
[
0
],
starts
=
[
i
],
ends
=
[
i
+
1
])
pre_cell
=
fluid
.
layers
.
slice
(
init_cell
,
axes
=
[
0
],
starts
=
[
i
],
ends
=
[
i
+
1
])
pre_hidden
=
fluid
.
layers
.
reshape
(
pre_hidden
,
shape
=
[
-
1
,
self
.
_hidden_size
])
pre_cell
=
fluid
.
layers
.
reshape
(
pre_cell
,
shape
=
[
-
1
,
self
.
_hidden_size
])
self
.
hidden_array
.
append
(
pre_hidden
)
self
.
cell_array
.
append
(
pre_cell
)
res
=
[]
for
index
in
range
(
self
.
_num_steps
):
self
.
_input
=
fluid
.
layers
.
slice
(
input_embedding
,
axes
=
[
1
],
starts
=
[
index
],
ends
=
[
index
+
1
])
self
.
_input
=
fluid
.
layers
.
reshape
(
self
.
_input
,
shape
=
[
-
1
,
self
.
_hidden_size
])
for
k
in
range
(
self
.
_num_layers
):
pre_hidden
=
self
.
hidden_array
[
k
]
pre_cell
=
self
.
cell_array
[
k
]
weight_1
=
self
.
weight_1_arr
[
k
]
bias
=
self
.
bias_arr
[
k
]
nn
=
fluid
.
layers
.
concat
([
self
.
_input
,
pre_hidden
],
1
)
gate_input
=
fluid
.
layers
.
matmul
(
x
=
nn
,
y
=
weight_1
)
gate_input
=
fluid
.
layers
.
elementwise_add
(
gate_input
,
bias
)
i
,
j
,
f
,
o
=
fluid
.
layers
.
split
(
gate_input
,
num_or_sections
=
4
,
dim
=-
1
)
c
=
pre_cell
*
fluid
.
layers
.
sigmoid
(
f
)
+
fluid
.
layers
.
sigmoid
(
i
)
*
fluid
.
layers
.
tanh
(
j
)
m
=
fluid
.
layers
.
tanh
(
c
)
*
fluid
.
layers
.
sigmoid
(
o
)
self
.
hidden_array
[
k
]
=
m
self
.
cell_array
[
k
]
=
c
self
.
_input
=
m
if
self
.
_dropout
is
not
None
and
self
.
_dropout
>
0.0
:
self
.
_input
=
fluid
.
layers
.
dropout
(
self
.
_input
,
dropout_prob
=
self
.
_dropout
,
dropout_implementation
=
'upscale_in_train'
)
res
.
append
(
fluid
.
layers
.
reshape
(
self
.
_input
,
shape
=
[
1
,
-
1
,
self
.
_hidden_size
]))
real_res
=
fluid
.
layers
.
concat
(
res
,
0
)
real_res
=
fluid
.
layers
.
transpose
(
x
=
real_res
,
perm
=
[
1
,
0
,
2
])
last_hidden
=
fluid
.
layers
.
concat
(
self
.
hidden_array
,
1
)
last_hidden
=
fluid
.
layers
.
reshape
(
last_hidden
,
shape
=
[
-
1
,
self
.
_num_layers
,
self
.
_hidden_size
])
last_hidden
=
fluid
.
layers
.
transpose
(
x
=
last_hidden
,
perm
=
[
1
,
0
,
2
])
last_cell
=
fluid
.
layers
.
concat
(
self
.
cell_array
,
1
)
last_cell
=
fluid
.
layers
.
reshape
(
last_cell
,
shape
=
[
-
1
,
self
.
_num_layers
,
self
.
_hidden_size
])
last_cell
=
fluid
.
layers
.
transpose
(
x
=
last_cell
,
perm
=
[
1
,
0
,
2
])
return
real_res
,
last_hidden
,
last_cell
class
SimpleConvPool
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
,
...
...
@@ -132,3 +236,67 @@ class BOW(fluid.dygraph.Layer):
return
avg_cost
,
prediction
,
acc
else
:
return
prediction
class
LSTM
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
,
dict_dim
,
batch_size
,
seq_len
):
super
(
LSTM
,
self
).
__init__
(
name_scope
)
self
.
dict_dim
=
dict_dim
self
.
emb_dim
=
128
self
.
hid_dim
=
128
self
.
fc_hid_dim
=
96
self
.
class_dim
=
2
self
.
lstm_num_steps
=
1
self
.
lstm_num_layers
=
1
self
.
batch_size
=
batch_size
self
.
seq_len
=
seq_len
self
.
embedding
=
Embedding
(
self
.
full_name
(),
size
=
[
self
.
dict_dim
+
1
,
self
.
emb_dim
],
dtype
=
'float32'
,
param_attr
=
fluid
.
ParamAttr
(
learning_rate
=
30
),
is_sparse
=
False
)
self
.
_fc1
=
FC
(
self
.
full_name
(),
size
=
self
.
hid_dim
*
4
,
num_flatten_dims
=
2
)
self
.
_fc2
=
FC
(
self
.
full_name
(),
size
=
self
.
fc_hid_dim
,
act
=
"tanh"
)
self
.
_fc_prediction
=
FC
(
self
.
full_name
(),
size
=
self
.
class_dim
,
act
=
"softmax"
)
self
.
simple_lstm_rnn
=
SimpleLSTMRNN
(
self
.
full_name
(),
self
.
hid_dim
*
4
,
num_steps
=
self
.
lstm_num_steps
,
num_layers
=
self
.
lstm_num_layers
,
init_scale
=
0.1
,
dropout
=
None
)
def
forward
(
self
,
inputs
,
init_hidden
,
init_cell
,
label
=
None
):
emb
=
self
.
embedding
(
inputs
)
o_np_mask
=
(
inputs
.
numpy
()
!=
self
.
dict_dim
).
astype
(
'float32'
)
mask_emb
=
fluid
.
layers
.
expand
(
to_variable
(
o_np_mask
),
[
1
,
self
.
hid_dim
])
emb
=
emb
*
mask_emb
emb
=
fluid
.
layers
.
reshape
(
emb
,
shape
=
[
-
1
,
1
,
self
.
seq_len
,
self
.
hid_dim
])
emb
=
fluid
.
layers
.
reduce_max
(
emb
,
dim
=
1
)
fc_1
=
self
.
_fc1
(
emb
)
init_h
=
fluid
.
layers
.
reshape
(
init_hidden
,
shape
=
[
self
.
lstm_num_layers
,
-
1
,
self
.
hid_dim
*
4
])
init_c
=
fluid
.
layers
.
reshape
(
init_cell
,
shape
=
[
self
.
lstm_num_layers
,
-
1
,
self
.
hid_dim
*
4
])
real_res
,
last_hidden
,
last_cell
=
self
.
simple_lstm_rnn
(
fc_1
,
init_h
,
init_c
)
last_hidden
=
fluid
.
layers
.
reshape
(
last_hidden
,
shape
=
[
-
1
,
self
.
hid_dim
*
4
])
tanh_1
=
fluid
.
layers
.
tanh
(
last_hidden
)
fc_2
=
self
.
_fc2
(
tanh_1
)
prediction
=
self
.
_fc_prediction
(
fc_2
)
if
label
:
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
prediction
,
acc
,
last_hidden
,
last_cell
else
:
return
prediction
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录