提交 58347b8b 编写于 作者: Z zhengya01

add ce

上级 c0b6a1d1
#!/bin/bash
export MKL_NUM_THREADS=1
export OMP_NUM_THREADS=1
DATASET_PATH=${HOME}/.cache/paddle/dataset/cityscape/
cudaid=${deeplabv3plus:=0} # use 0-th card as default
export CUDA_VISIBLE_DEVICES=$cudaid
FLAGS_benchmark=true python train.py \
--batch_size=2 \
--train_crop_size=769 \
--total_step=50 \
--save_weights_path=output1 \
--dataset_path=$DATASET_PATH \
--enable_ce | python _ce.py
cudaid=${deeplabv3plus_m:=0,1,2,3} # use 0,1,2,3 card as default
export CUDA_VISIBLE_DEVICES=$cudaid
FLAGS_benchmark=true python train.py \
--batch_size=2 \
--train_crop_size=769 \
--total_step=50 \
--save_weights_path=output4 \
--dataset_path=$DATASET_PATH \
--enable_ce | python _ce.py
# this file is only used for continuous evaluation test!
import os
import sys
sys.path.append(os.environ['ceroot'])
from kpi import CostKpi
from kpi import DurationKpi
each_pass_duration_card1_kpi = DurationKpi('each_pass_duration_card1', 0.1, 0, actived=True)
train_loss_card1_kpi = CostKpi('train_loss_card1', 0.05, 0)
each_pass_duration_card4_kpi = DurationKpi('each_pass_duration_card4', 0.1, 0, actived=True)
train_loss_card4_kpi = CostKpi('train_loss_card4', 0.05, 0)
tracking_kpis = [
each_pass_duration_card1_kpi,
train_loss_card1_kpi,
each_pass_duration_card4_kpi,
train_loss_card4_kpi,
]
def parse_log(log):
'''
This method should be implemented by model developers.
The suggestion:
each line in the log should be key, value, for example:
"
train_cost\t1.0
test_cost\t1.0
train_cost\t1.0
train_cost\t1.0
train_acc\t1.2
"
'''
for line in log.split('\n'):
fs = line.strip().split('\t')
print(fs)
if len(fs) == 3 and fs[0] == 'kpis':
kpi_name = fs[1]
kpi_value = float(fs[2])
yield kpi_name, kpi_value
def log_to_ce(log):
kpi_tracker = {}
for kpi in tracking_kpis:
kpi_tracker[kpi.name] = kpi
for (kpi_name, kpi_value) in parse_log(log):
print(kpi_name, kpi_value)
kpi_tracker[kpi_name].add_record(kpi_value)
kpi_tracker[kpi_name].persist()
if __name__ == '__main__':
log = sys.stdin.read()
log_to_ce(log)
...@@ -34,6 +34,7 @@ def add_arguments(): ...@@ -34,6 +34,7 @@ def add_arguments():
add_argument('parallel', bool, False, "using ParallelExecutor.") add_argument('parallel', bool, False, "using ParallelExecutor.")
add_argument('use_gpu', bool, True, "Whether use GPU or CPU.") add_argument('use_gpu', bool, True, "Whether use GPU or CPU.")
add_argument('num_classes', int, 19, "Number of classes.") add_argument('num_classes', int, 19, "Number of classes.")
parser.add_argument('--enable_ce', action='store_true', help='If set, run the task with continuous evaluation logs.')
def load_model(): def load_model():
...@@ -84,6 +85,14 @@ def loss(logit, label): ...@@ -84,6 +85,14 @@ def loss(logit, label):
return loss, label_nignore return loss, label_nignore
def get_cards(args):
if args.enable_ce:
cards = os.environ.get('CUDA_VISIBLE_DEVICES')
num = len(cards.split(","))
return num
else:
return args.num_devices
CityscapeDataset = reader.CityscapeDataset CityscapeDataset = reader.CityscapeDataset
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
...@@ -99,6 +108,13 @@ deeplabv3p = models.deeplabv3p ...@@ -99,6 +108,13 @@ deeplabv3p = models.deeplabv3p
sp = fluid.Program() sp = fluid.Program()
tp = fluid.Program() tp = fluid.Program()
# only for ce
if args.enable_ce:
SEED = 102
sp.random_seed = SEED
tp.random_seed = SEED
crop_size = args.train_crop_size crop_size = args.train_crop_size
batch_size = args.batch_size batch_size = args.batch_size
image_shape = [crop_size, crop_size] image_shape = [crop_size, crop_size]
...@@ -155,7 +171,13 @@ if args.parallel: ...@@ -155,7 +171,13 @@ if args.parallel:
batches = dataset.get_batch_generator(batch_size, total_step) batches = dataset.get_batch_generator(batch_size, total_step)
total_time = 0.0
epoch_idx = 0
train_loss = 0
for i, imgs, labels, names in batches: for i, imgs, labels, names in batches:
epoch_idx += 1
begin_time = time.time()
prev_start_time = time.time() prev_start_time = time.time()
if args.parallel: if args.parallel:
retv = exe_p.run(fetch_list=[pred.name, loss_mean.name], retv = exe_p.run(fetch_list=[pred.name, loss_mean.name],
...@@ -167,11 +189,22 @@ for i, imgs, labels, names in batches: ...@@ -167,11 +189,22 @@ for i, imgs, labels, names in batches:
'label': labels}, 'label': labels},
fetch_list=[pred, loss_mean]) fetch_list=[pred, loss_mean])
end_time = time.time() end_time = time.time()
total_time += end_time - begin_time
if i % 100 == 0: if i % 100 == 0:
print("Model is saved to", args.save_weights_path) print("Model is saved to", args.save_weights_path)
save_model() save_model()
print("step {:d}, loss: {:.6f}, step_time_cost: {:.3f}".format( print("step {:d}, loss: {:.6f}, step_time_cost: {:.3f}".format(
i, np.mean(retv[1]), end_time - prev_start_time)) i, np.mean(retv[1]), end_time - prev_start_time))
# only for ce
train_loss = np.mean(retv[1])
if args.enable_ce:
gpu_num = get_cards(args)
print("kpis\teach_pass_duration_card%s\t%s" %
(gpu_num, total_time / epoch_idx))
print("kpis\ttrain_loss_card%s\t%s" %
(gpu_num, train_loss))
print("Training done. Model is saved to", args.save_weights_path) print("Training done. Model is saved to", args.save_weights_path)
save_model() save_model()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册