Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
58347b8b
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
58347b8b
编写于
12月 27, 2018
作者:
Z
zhengya01
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add ce
上级
c0b6a1d1
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
121 addition
and
0 deletion
+121
-0
fluid/PaddleCV/deeplabv3+/.run_ce.sh
fluid/PaddleCV/deeplabv3+/.run_ce.sh
+28
-0
fluid/PaddleCV/deeplabv3+/__init__.py
fluid/PaddleCV/deeplabv3+/__init__.py
+0
-0
fluid/PaddleCV/deeplabv3+/_ce.py
fluid/PaddleCV/deeplabv3+/_ce.py
+60
-0
fluid/PaddleCV/deeplabv3+/train.py
fluid/PaddleCV/deeplabv3+/train.py
+33
-0
未找到文件。
fluid/PaddleCV/deeplabv3+/.run_ce.sh
0 → 100755
浏览文件 @
58347b8b
#!/bin/bash
export
MKL_NUM_THREADS
=
1
export
OMP_NUM_THREADS
=
1
DATASET_PATH
=
${
HOME
}
/.cache/paddle/dataset/cityscape/
cudaid
=
${
deeplabv3plus
:
=0
}
# use 0-th card as default
export
CUDA_VISIBLE_DEVICES
=
$cudaid
FLAGS_benchmark
=
true
python train.py
\
--batch_size
=
2
\
--train_crop_size
=
769
\
--total_step
=
50
\
--save_weights_path
=
output1
\
--dataset_path
=
$DATASET_PATH
\
--enable_ce
| python _ce.py
cudaid
=
${
deeplabv3plus_m
:
=0,1,2,3
}
# use 0,1,2,3 card as default
export
CUDA_VISIBLE_DEVICES
=
$cudaid
FLAGS_benchmark
=
true
python train.py
\
--batch_size
=
2
\
--train_crop_size
=
769
\
--total_step
=
50
\
--save_weights_path
=
output4
\
--dataset_path
=
$DATASET_PATH
\
--enable_ce
| python _ce.py
fluid/PaddleCV/deeplabv3+/__init__.py
0 → 100644
浏览文件 @
58347b8b
fluid/PaddleCV/deeplabv3+/_ce.py
0 → 100644
浏览文件 @
58347b8b
# this file is only used for continuous evaluation test!
import
os
import
sys
sys
.
path
.
append
(
os
.
environ
[
'ceroot'
])
from
kpi
import
CostKpi
from
kpi
import
DurationKpi
each_pass_duration_card1_kpi
=
DurationKpi
(
'each_pass_duration_card1'
,
0.1
,
0
,
actived
=
True
)
train_loss_card1_kpi
=
CostKpi
(
'train_loss_card1'
,
0.05
,
0
)
each_pass_duration_card4_kpi
=
DurationKpi
(
'each_pass_duration_card4'
,
0.1
,
0
,
actived
=
True
)
train_loss_card4_kpi
=
CostKpi
(
'train_loss_card4'
,
0.05
,
0
)
tracking_kpis
=
[
each_pass_duration_card1_kpi
,
train_loss_card1_kpi
,
each_pass_duration_card4_kpi
,
train_loss_card4_kpi
,
]
def
parse_log
(
log
):
'''
This method should be implemented by model developers.
The suggestion:
each line in the log should be key, value, for example:
"
train_cost
\t
1.0
test_cost
\t
1.0
train_cost
\t
1.0
train_cost
\t
1.0
train_acc
\t
1.2
"
'''
for
line
in
log
.
split
(
'
\n
'
):
fs
=
line
.
strip
().
split
(
'
\t
'
)
print
(
fs
)
if
len
(
fs
)
==
3
and
fs
[
0
]
==
'kpis'
:
kpi_name
=
fs
[
1
]
kpi_value
=
float
(
fs
[
2
])
yield
kpi_name
,
kpi_value
def
log_to_ce
(
log
):
kpi_tracker
=
{}
for
kpi
in
tracking_kpis
:
kpi_tracker
[
kpi
.
name
]
=
kpi
for
(
kpi_name
,
kpi_value
)
in
parse_log
(
log
):
print
(
kpi_name
,
kpi_value
)
kpi_tracker
[
kpi_name
].
add_record
(
kpi_value
)
kpi_tracker
[
kpi_name
].
persist
()
if
__name__
==
'__main__'
:
log
=
sys
.
stdin
.
read
()
log_to_ce
(
log
)
fluid/PaddleCV/deeplabv3+/train.py
100644 → 100755
浏览文件 @
58347b8b
...
@@ -34,6 +34,7 @@ def add_arguments():
...
@@ -34,6 +34,7 @@ def add_arguments():
add_argument
(
'parallel'
,
bool
,
False
,
"using ParallelExecutor."
)
add_argument
(
'parallel'
,
bool
,
False
,
"using ParallelExecutor."
)
add_argument
(
'use_gpu'
,
bool
,
True
,
"Whether use GPU or CPU."
)
add_argument
(
'use_gpu'
,
bool
,
True
,
"Whether use GPU or CPU."
)
add_argument
(
'num_classes'
,
int
,
19
,
"Number of classes."
)
add_argument
(
'num_classes'
,
int
,
19
,
"Number of classes."
)
parser
.
add_argument
(
'--enable_ce'
,
action
=
'store_true'
,
help
=
'If set, run the task with continuous evaluation logs.'
)
def
load_model
():
def
load_model
():
...
@@ -84,6 +85,14 @@ def loss(logit, label):
...
@@ -84,6 +85,14 @@ def loss(logit, label):
return
loss
,
label_nignore
return
loss
,
label_nignore
def
get_cards
(
args
):
if
args
.
enable_ce
:
cards
=
os
.
environ
.
get
(
'CUDA_VISIBLE_DEVICES'
)
num
=
len
(
cards
.
split
(
","
))
return
num
else
:
return
args
.
num_devices
CityscapeDataset
=
reader
.
CityscapeDataset
CityscapeDataset
=
reader
.
CityscapeDataset
parser
=
argparse
.
ArgumentParser
()
parser
=
argparse
.
ArgumentParser
()
...
@@ -99,6 +108,13 @@ deeplabv3p = models.deeplabv3p
...
@@ -99,6 +108,13 @@ deeplabv3p = models.deeplabv3p
sp
=
fluid
.
Program
()
sp
=
fluid
.
Program
()
tp
=
fluid
.
Program
()
tp
=
fluid
.
Program
()
# only for ce
if
args
.
enable_ce
:
SEED
=
102
sp
.
random_seed
=
SEED
tp
.
random_seed
=
SEED
crop_size
=
args
.
train_crop_size
crop_size
=
args
.
train_crop_size
batch_size
=
args
.
batch_size
batch_size
=
args
.
batch_size
image_shape
=
[
crop_size
,
crop_size
]
image_shape
=
[
crop_size
,
crop_size
]
...
@@ -155,7 +171,13 @@ if args.parallel:
...
@@ -155,7 +171,13 @@ if args.parallel:
batches
=
dataset
.
get_batch_generator
(
batch_size
,
total_step
)
batches
=
dataset
.
get_batch_generator
(
batch_size
,
total_step
)
total_time
=
0.0
epoch_idx
=
0
train_loss
=
0
for
i
,
imgs
,
labels
,
names
in
batches
:
for
i
,
imgs
,
labels
,
names
in
batches
:
epoch_idx
+=
1
begin_time
=
time
.
time
()
prev_start_time
=
time
.
time
()
prev_start_time
=
time
.
time
()
if
args
.
parallel
:
if
args
.
parallel
:
retv
=
exe_p
.
run
(
fetch_list
=
[
pred
.
name
,
loss_mean
.
name
],
retv
=
exe_p
.
run
(
fetch_list
=
[
pred
.
name
,
loss_mean
.
name
],
...
@@ -167,11 +189,22 @@ for i, imgs, labels, names in batches:
...
@@ -167,11 +189,22 @@ for i, imgs, labels, names in batches:
'label'
:
labels
},
'label'
:
labels
},
fetch_list
=
[
pred
,
loss_mean
])
fetch_list
=
[
pred
,
loss_mean
])
end_time
=
time
.
time
()
end_time
=
time
.
time
()
total_time
+=
end_time
-
begin_time
if
i
%
100
==
0
:
if
i
%
100
==
0
:
print
(
"Model is saved to"
,
args
.
save_weights_path
)
print
(
"Model is saved to"
,
args
.
save_weights_path
)
save_model
()
save_model
()
print
(
"step {:d}, loss: {:.6f}, step_time_cost: {:.3f}"
.
format
(
print
(
"step {:d}, loss: {:.6f}, step_time_cost: {:.3f}"
.
format
(
i
,
np
.
mean
(
retv
[
1
]),
end_time
-
prev_start_time
))
i
,
np
.
mean
(
retv
[
1
]),
end_time
-
prev_start_time
))
# only for ce
train_loss
=
np
.
mean
(
retv
[
1
])
if
args
.
enable_ce
:
gpu_num
=
get_cards
(
args
)
print
(
"kpis
\t
each_pass_duration_card%s
\t
%s"
%
(
gpu_num
,
total_time
/
epoch_idx
))
print
(
"kpis
\t
train_loss_card%s
\t
%s"
%
(
gpu_num
,
train_loss
))
print
(
"Training done. Model is saved to"
,
args
.
save_weights_path
)
print
(
"Training done. Model is saved to"
,
args
.
save_weights_path
)
save_model
()
save_model
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录