提交 53440c59 编写于 作者: D dengkaipeng

change mean/std to /255.0

上级 19bbe367
......@@ -121,7 +121,7 @@ def random_interp(img, size, interp=None):
img = cv2.resize(img, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=interp)
return img
def random_expand(img, gtboxes, max_ratio=4., fill=None, keep_ratio=True, thresh=0.5):
def random_expand(img, gtboxes, max_ratio=2., fill=None, keep_ratio=True, thresh=0.5):
if random.random() > thresh:
return img, gtboxes
......
......@@ -38,23 +38,23 @@ class DataSetReader(object):
self.has_parsed_categpry = False
def _parse_dataset_dir(self, mode):
cfg.data_dir = "dataset/coco"
cfg.train_file_list = 'annotations/instances_val2017.json'
cfg.train_data_dir = 'val2017'
cfg.dataset = "coco2017"
# if 'coco2014' in cfg.dataset:
# cfg.train_file_list = 'annotations/instances_train2014.json'
# cfg.train_data_dir = 'train2014'
# cfg.val_file_list = 'annotations/instances_val2014.json'
# cfg.val_data_dir = 'val2014'
# elif 'coco2017' in cfg.dataset:
# cfg.train_file_list = 'annotations/instances_train2017.json'
# cfg.train_data_dir = 'train2017'
# cfg.val_file_list = 'annotations/instances_val2017.json'
# cfg.val_data_dir = 'val2017'
# else:
# raise NotImplementedError('Dataset {} not supported'.format(
# cfg.dataset))
# cfg.data_dir = "dataset/coco"
# cfg.train_file_list = 'annotations/instances_val2017.json'
# cfg.train_data_dir = 'val2017'
# cfg.dataset = "coco2017"
if 'coco2014' in cfg.dataset:
cfg.train_file_list = 'annotations/instances_train2014.json'
cfg.train_data_dir = 'train2014'
cfg.val_file_list = 'annotations/instances_val2014.json'
cfg.val_data_dir = 'val2014'
elif 'coco2017' in cfg.dataset:
cfg.train_file_list = 'annotations/instances_train2017.json'
cfg.train_data_dir = 'train2017'
cfg.val_file_list = 'annotations/instances_val2017.json'
cfg.val_data_dir = 'val2017'
else:
raise NotImplementedError('Dataset {} not supported'.format(
cfg.dataset))
if mode == 'train':
cfg.train_file_list = os.path.join(cfg.data_dir, cfg.train_file_list)
......@@ -157,10 +157,11 @@ class DataSetReader(object):
im_scale_x = size / float(w)
im_scale_y = size / float(h)
out_img = cv2.resize(im, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=cv2.INTER_LINEAR)
mean = np.array(mean).reshape((1, 1, -1))
std = np.array(std).reshape((1, 1, -1))
out_img = (out_img / 255.0 - mean) / std
out_img = out_img.transpose((2, 0, 1))
# mean = np.array(mean).reshape((1, 1, -1))
# std = np.array(std).reshape((1, 1, -1))
# out_img = (out_img / 255.0 - mean) / std
# out_img = out_img.transpose((2, 0, 1))
out_img = im.astype('float32').transpose((2, 0, 1)) / 255.0
return (out_img, int(img['id']), (h, w))
......@@ -184,10 +185,11 @@ class DataSetReader(object):
im, gt_boxes, gt_labels, gt_scores = image_utils.image_augment(im, gt_boxes, gt_labels, gt_scores, size, mean)
mean = np.array(mean).reshape((1, 1, -1))
std = np.array(std).reshape((1, 1, -1))
out_img = (im / 255.0 - mean) / std
out_img = out_img.transpose((2, 0, 1)).astype('float32')
# mean = np.array(mean).reshape((1, 1, -1))
# std = np.array(std).reshape((1, 1, -1))
# out_img = (im / 255.0 - mean) / std
# out_img = out_img.transpose((2, 0, 1)).astype('float32')
out_img = im.astype('float32').transpose((2, 0, 1)) / 255.0
return (out_img, gt_boxes, gt_labels, gt_scores)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册