Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
51bc0a90
M
models
项目概览
PaddlePaddle
/
models
接近 2 年 前同步成功
通知
230
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
51bc0a90
编写于
2月 21, 2019
作者:
Y
Yancey1989
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
polish code
上级
888c3c49
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
180 addition
and
2 deletion
+180
-2
fluid/PaddleCV/image_classification/fast_resnet/reader.py
fluid/PaddleCV/image_classification/fast_resnet/reader.py
+178
-0
fluid/PaddleCV/image_classification/fast_resnet/torchvision_reader.py
...CV/image_classification/fast_resnet/torchvision_reader.py
+2
-2
未找到文件。
fluid/PaddleCV/image_classification/fast_resnet/reader.py
0 → 100644
浏览文件 @
51bc0a90
import
os
import
numpy
as
np
import
math
import
random
import
torchvision
import
torchvision.transforms
as
transforms
import
torchvision.datasets
as
datasets
import
pickle
from
tqdm
import
tqdm
import
time
import
multiprocessing
TRAINER_NUMS
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_NUM"
,
"1"
))
TRAINER_ID
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
,
"0"
))
epoch
=
0
class
ImageFolder
(
object
):
def
__init__
(
self
,
root
,
transforms
):
pass
FINISH_EVENT
=
"FINISH_EVENT"
class
PaddleDataLoader
(
object
):
def
__init__
(
self
,
torch_dataset
,
indices
=
None
,
concurrent
=
16
,
queue_size
=
3072
):
self
.
torch_dataset
=
torch_dataset
self
.
data_queue
=
multiprocessing
.
Queue
(
queue_size
)
self
.
indices
=
indices
self
.
concurrent
=
concurrent
def
_worker_loop
(
self
,
dataset
,
worker_indices
,
worker_id
):
cnt
=
0
for
idx
in
worker_indices
:
cnt
+=
1
img
,
label
=
self
.
torch_dataset
[
idx
]
img
=
np
.
array
(
img
).
astype
(
'uint8'
).
transpose
((
2
,
0
,
1
))
self
.
data_queue
.
put
((
img
,
label
))
print
(
"worker: [%d] read [%d] samples. "
%
(
worker_id
,
cnt
))
self
.
data_queue
.
put
(
FINISH_EVENT
)
def
reader
(
self
):
def
_reader_creator
():
worker_processes
=
[]
total_img
=
len
(
self
.
torch_dataset
)
print
(
"total image: "
,
total_img
)
if
self
.
indices
is
None
:
self
.
indices
=
[
i
for
i
in
xrange
(
total_img
)]
random
.
seed
(
time
.
time
())
random
.
shuffle
(
self
.
indices
)
print
(
"shuffle indices: %s ..."
%
self
.
indices
[:
10
])
imgs_per_worker
=
int
(
math
.
ceil
(
total_img
/
self
.
concurrent
))
for
i
in
xrange
(
self
.
concurrent
):
start
=
i
*
imgs_per_worker
end
=
(
i
+
1
)
*
imgs_per_worker
if
i
!=
self
.
concurrent
-
1
else
None
sliced_indices
=
self
.
indices
[
start
:
end
]
w
=
multiprocessing
.
Process
(
target
=
self
.
_worker_loop
,
args
=
(
self
.
torch_dataset
,
sliced_indices
,
i
)
)
w
.
daemon
=
True
w
.
start
()
worker_processes
.
append
(
w
)
finish_workers
=
0
worker_cnt
=
len
(
worker_processes
)
while
finish_workers
<
worker_cnt
:
sample
=
self
.
data_queue
.
get
()
if
sample
==
FINISH_EVENT
:
finish_workers
+=
1
else
:
yield
sample
return
_reader_creator
def
train
(
traindir
,
sz
,
min_scale
=
0.08
):
train_tfms
=
[
transforms
.
RandomResizedCrop
(
sz
,
scale
=
(
min_scale
,
1.0
)),
transforms
.
RandomHorizontalFlip
()
]
train_dataset
=
datasets
.
ImageFolder
(
traindir
,
transforms
.
Compose
(
train_tfms
))
return
PaddleDataLoader
(
train_dataset
).
reader
()
def
test
(
valdir
,
bs
,
sz
,
rect_val
=
False
):
if
rect_val
:
idx_ar_sorted
=
sort_ar
(
valdir
)
idx_sorted
,
_
=
zip
(
*
idx_ar_sorted
)
idx2ar
=
map_idx2ar
(
idx_ar_sorted
,
bs
)
ar_tfms
=
[
transforms
.
Resize
(
int
(
sz
*
1.14
)),
CropArTfm
(
idx2ar
,
sz
)]
val_dataset
=
ValDataset
(
valdir
,
transform
=
ar_tfms
)
return
PaddleDataLoader
(
val_dataset
,
concurrent
=
1
,
indices
=
idx_sorted
).
reader
()
val_tfms
=
[
transforms
.
Resize
(
int
(
sz
*
1.14
)),
transforms
.
CenterCrop
(
sz
)]
val_dataset
=
datasets
.
ImageFolder
(
valdir
,
transforms
.
Compose
(
val_tfms
))
return
PaddleDataLoader
(
val_dataset
).
reader
()
class
ValDataset
(
datasets
.
ImageFolder
):
def
__init__
(
self
,
root
,
transform
=
None
,
target_transform
=
None
):
super
(
ValDataset
,
self
).
__init__
(
root
,
transform
,
target_transform
)
def
__getitem__
(
self
,
index
):
path
,
target
=
self
.
imgs
[
index
]
sample
=
self
.
loader
(
path
)
if
self
.
transform
is
not
None
:
for
tfm
in
self
.
transform
:
if
isinstance
(
tfm
,
CropArTfm
):
sample
=
tfm
(
sample
,
index
)
else
:
sample
=
tfm
(
sample
)
if
self
.
target_transform
is
not
None
:
target
=
self
.
target_transform
(
target
)
return
sample
,
target
class
CropArTfm
(
object
):
def
__init__
(
self
,
idx2ar
,
target_size
):
self
.
idx2ar
,
self
.
target_size
=
idx2ar
,
target_size
def
__call__
(
self
,
img
,
idx
):
target_ar
=
self
.
idx2ar
[
idx
]
if
target_ar
<
1
:
w
=
int
(
self
.
target_size
/
target_ar
)
size
=
(
w
//
8
*
8
,
self
.
target_size
)
else
:
h
=
int
(
self
.
target_size
*
target_ar
)
size
=
(
self
.
target_size
,
h
//
8
*
8
)
return
transforms
.
functional
.
center_crop
(
img
,
size
)
def
sort_ar
(
valdir
):
idx2ar_file
=
valdir
+
'/../sorted_idxar.p'
if
os
.
path
.
isfile
(
idx2ar_file
):
return
pickle
.
load
(
open
(
idx2ar_file
,
'rb'
))
print
(
'Creating AR indexes. Please be patient this may take a couple minutes...'
)
val_dataset
=
datasets
.
ImageFolder
(
valdir
)
# AS: TODO: use Image.open instead of looping through dataset
sizes
=
[
img
[
0
].
size
for
img
in
tqdm
(
val_dataset
,
total
=
len
(
val_dataset
))]
idx_ar
=
[(
i
,
round
(
s
[
0
]
*
1.0
/
s
[
1
],
5
))
for
i
,
s
in
enumerate
(
sizes
)]
sorted_idxar
=
sorted
(
idx_ar
,
key
=
lambda
x
:
x
[
1
])
pickle
.
dump
(
sorted_idxar
,
open
(
idx2ar_file
,
'wb'
))
print
(
'Done'
)
return
sorted_idxar
def
chunks
(
l
,
n
):
n
=
max
(
1
,
n
)
return
(
l
[
i
:
i
+
n
]
for
i
in
range
(
0
,
len
(
l
),
n
))
def
map_idx2ar
(
idx_ar_sorted
,
batch_size
):
ar_chunks
=
list
(
chunks
(
idx_ar_sorted
,
batch_size
))
idx2ar
=
{}
for
chunk
in
ar_chunks
:
idxs
,
ars
=
list
(
zip
(
*
chunk
))
mean
=
round
(
np
.
mean
(
ars
),
5
)
for
idx
in
idxs
:
idx2ar
[
idx
]
=
mean
return
idx2ar
if
__name__
==
"__main__"
:
#ds, sampler = create_validation_set("/data/imagenet/validation", 128, 288, True, True)
#for item in sampler:
# for idx in item:
# ds[idx]
import
time
test_reader
=
test
(
valdir
=
"/data/imagenet/validation"
,
bs
=
50
,
sz
=
288
,
rect_val
=
True
)
start_ts
=
time
.
time
()
for
idx
,
data
in
enumerate
(
test_reader
()):
print
(
idx
,
data
[
0
].
shape
,
data
[
1
])
if
idx
==
10
:
break
if
(
idx
+
1
)
%
1000
==
0
:
cost
=
(
time
.
time
()
-
start_ts
)
print
(
"%d samples per second"
%
(
1000
/
cost
))
start_ts
=
time
.
time
()
\ No newline at end of file
fluid/PaddleCV/image_classification/fast_resnet/torchvision_reader.py
浏览文件 @
51bc0a90
...
...
@@ -3,10 +3,10 @@ import os
import
numpy
as
np
import
math
import
random
import
torchvision
import
torchvision.transforms
as
transforms
import
torchvision.datasets
as
datasets
import
torchvision
import
pickle
from
tqdm
import
tqdm
import
time
...
...
@@ -122,7 +122,7 @@ class CropArTfm(object):
else
:
h
=
int
(
self
.
target_size
*
target_ar
)
size
=
(
self
.
target_size
,
h
//
8
*
8
)
return
t
orchvision
.
t
ransforms
.
functional
.
center_crop
(
img
,
size
)
return
transforms
.
functional
.
center_crop
(
img
,
size
)
def
sort_ar
(
valdir
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录