Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
503ebb48
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
503ebb48
编写于
6月 18, 2019
作者:
R
ruri
提交者:
GitHub
6月 18, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix py3 bugs (#2437)
上级
dc8813aa
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
135 addition
and
146 deletion
+135
-146
PaddleCV/image_classification/README.md
PaddleCV/image_classification/README.md
+3
-3
PaddleCV/image_classification/README_cn.md
PaddleCV/image_classification/README_cn.md
+3
-3
PaddleCV/image_classification/eval.py
PaddleCV/image_classification/eval.py
+1
-5
PaddleCV/image_classification/infer.py
PaddleCV/image_classification/infer.py
+1
-6
PaddleCV/image_classification/models/se_resnext_vd.py
PaddleCV/image_classification/models/se_resnext_vd.py
+2
-2
PaddleCV/image_classification/reader_cv2.py
PaddleCV/image_classification/reader_cv2.py
+2
-2
PaddleCV/image_classification/run.sh
PaddleCV/image_classification/run.sh
+123
-125
未找到文件。
PaddleCV/image_classification/README.md
浏览文件 @
503ebb48
...
@@ -167,13 +167,13 @@ Available top-1/top-5 validation accuracy on ImageNet 2012 are listed in table.
...
@@ -167,13 +167,13 @@ Available top-1/top-5 validation accuracy on ImageNet 2012 are listed in table.
|
[
ResNet101_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
)
| 79.44%/94.47% |
|
[
ResNet101_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
)
| 79.44%/94.47% |
|
[
ResNet152
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.tar
)
| 78.26%/93.96% |
|
[
ResNet152
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.tar
)
| 78.26%/93.96% |
|
[
ResNet152_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_vd_pretrained.tar
)
| 80.59%/95.30% |
|
[
ResNet152_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_vd_pretrained.tar
)
| 80.59%/95.30% |
|
[
ResNet200_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet
152
_vd_pretrained.tar
)
| 80.93%/95.33% |
|
[
ResNet200_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet
200
_vd_pretrained.tar
)
| 80.93%/95.33% |
|
[
ResNeXt101_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_64x4d_pretrained.tar
)
| 79.35%/94.52% |
|
[
ResNeXt101_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_64x4d_pretrained.tar
)
| 79.35%/94.52% |
|
[
ResNeXt101_vd_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar
)
| 80.78%/95.20% |
|
[
ResNeXt101_vd_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar
)
| 80.78%/95.20% |
|
[
SE_ResNeXt50_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar
)
| 78.44%/93.96% |
|
[
SE_ResNeXt50_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar
)
| 78.44%/93.96% |
|
[
SE_ResNeXt101_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar
)
| 79.12%/94.20% |
|
[
SE_ResNeXt101_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar
)
| 79.12%/94.20% |
|
[
SE154_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE154_vd_pretrained.tar
)
| 81.4
5%/95.49
% |
|
[
SE154_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE154_vd_pretrained.tar
)
| 81.4
0%/95.48
% |
|
[
GoogleNet
](
https://paddle-imagenet-models-name.bj.bcebos.com/GoogleNet_pretrained.tar
)
| 70.70%/89.66% |
|
[
GoogleNet
](
https://paddle-imagenet-models-name.bj.bcebos.com/GoogleNet_pretrained.tar
)
| 70.70%/89.66% |
|
[
ShuffleNetV2
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar
)
| 70.03%/89.17% |
|
[
ShuffleNetV2
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar
)
| 70.03%/89.17% |
|
[
InceptionV4
](
https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar
)
| 80.
88%/95.28
% |
|
[
InceptionV4
](
https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar
)
| 80.
77%/95.26
% |
PaddleCV/image_classification/README_cn.md
浏览文件 @
503ebb48
...
@@ -163,12 +163,12 @@ python infer.py \
...
@@ -163,12 +163,12 @@ python infer.py \
|
[
ResNet101_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
)
| 79.44%/94.47% |
|
[
ResNet101_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
)
| 79.44%/94.47% |
|
[
ResNet152
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.tar
)
| 78.26%/93.96% |
|
[
ResNet152
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.tar
)
| 78.26%/93.96% |
|
[
ResNet152_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_vd_pretrained.tar
)
| 80.59%/95.30% |
|
[
ResNet152_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_vd_pretrained.tar
)
| 80.59%/95.30% |
|
[
ResNet200_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet
152
_vd_pretrained.tar
)
| 80.93%/95.33% |
|
[
ResNet200_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet
200
_vd_pretrained.tar
)
| 80.93%/95.33% |
|
[
ResNeXt101_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_64x4d_pretrained.tar
)
| 79.35%/94.52% |
|
[
ResNeXt101_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_64x4d_pretrained.tar
)
| 79.35%/94.52% |
|
[
ResNeXt101_vd_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar
)
| 80.78%/95.20% |
|
[
ResNeXt101_vd_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar
)
| 80.78%/95.20% |
|
[
SE_ResNeXt50_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar
)
| 78.44%/93.96% |
|
[
SE_ResNeXt50_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar
)
| 78.44%/93.96% |
|
[
SE_ResNeXt101_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar
)
| 79.12%/94.20% |
|
[
SE_ResNeXt101_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar
)
| 79.12%/94.20% |
|
[
SE154_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE154_vd_pretrained.tar
)
| 81.4
5%/95.49
% |
|
[
SE154_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE154_vd_pretrained.tar
)
| 81.4
0%/95.48
% |
|
[
GoogleNet
](
https://paddle-imagenet-models-name.bj.bcebos.com/GoogleNet_pretrained.tar
)
| 70.70%/89.66% |
|
[
GoogleNet
](
https://paddle-imagenet-models-name.bj.bcebos.com/GoogleNet_pretrained.tar
)
| 70.70%/89.66% |
|
[
ShuffleNetV2
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar
)
| 70.03%/89.17% |
|
[
ShuffleNetV2
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar
)
| 70.03%/89.17% |
|
[
InceptionV4
](
https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar
)
| 80.
88%/95.28
% |
|
[
InceptionV4
](
https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar
)
| 80.
77%/95.26
% |
PaddleCV/image_classification/eval.py
浏览文件 @
503ebb48
...
@@ -77,12 +77,8 @@ def eval(args):
...
@@ -77,12 +77,8 @@ def eval(args):
exe
=
fluid
.
Executor
(
place
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
exe
.
run
(
fluid
.
default_startup_program
())
if
pretrained_model
:
def
if_exist
(
var
):
fluid
.
io
.
load_persistables
(
exe
,
pretrained_model
)
return
os
.
path
.
exists
(
os
.
path
.
join
(
pretrained_model
,
var
.
name
))
fluid
.
io
.
load_vars
(
exe
,
pretrained_model
,
predicate
=
if_exist
)
val_reader
=
paddle
.
batch
(
reader
.
val
(
settings
=
args
),
batch_size
=
args
.
batch_size
)
val_reader
=
paddle
.
batch
(
reader
.
val
(
settings
=
args
),
batch_size
=
args
.
batch_size
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
image
,
label
])
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
image
,
label
])
...
...
PaddleCV/image_classification/infer.py
浏览文件 @
503ebb48
...
@@ -61,12 +61,7 @@ def infer(args):
...
@@ -61,12 +61,7 @@ def infer(args):
exe
=
fluid
.
Executor
(
place
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
exe
.
run
(
fluid
.
default_startup_program
())
if
pretrained_model
:
fluid
.
io
.
load_persistables
(
exe
,
pretrained_model
)
def
if_exist
(
var
):
return
os
.
path
.
exists
(
os
.
path
.
join
(
pretrained_model
,
var
.
name
))
fluid
.
io
.
load_vars
(
exe
,
pretrained_model
,
predicate
=
if_exist
)
if
save_inference
:
if
save_inference
:
fluid
.
io
.
save_inference_model
(
fluid
.
io
.
save_inference_model
(
dirname
=
model_name
,
dirname
=
model_name
,
...
...
PaddleCV/image_classification/models/se_resnext_vd.py
浏览文件 @
503ebb48
...
@@ -147,7 +147,7 @@ class SE_ResNeXt():
...
@@ -147,7 +147,7 @@ class SE_ResNeXt():
act
=
'relu'
,
act
=
'relu'
,
name
=
'conv'
+
name
+
'_x2'
)
name
=
'conv'
+
name
+
'_x2'
)
if
cardinality
==
64
:
if
cardinality
==
64
:
num_filters
=
num_filters
/
2
num_filters
=
num_filters
/
/
2
conv2
=
self
.
conv_bn_layer
(
conv2
=
self
.
conv_bn_layer
(
input
=
conv1
,
num_filters
=
num_filters
*
2
,
filter_size
=
1
,
act
=
None
,
name
=
'conv'
+
name
+
'_x3'
)
input
=
conv1
,
num_filters
=
num_filters
*
2
,
filter_size
=
1
,
act
=
None
,
name
=
'conv'
+
name
+
'_x3'
)
scale
=
self
.
squeeze_excitation
(
scale
=
self
.
squeeze_excitation
(
...
@@ -224,7 +224,7 @@ class SE_ResNeXt():
...
@@ -224,7 +224,7 @@ class SE_ResNeXt():
input
=
input
,
pool_size
=
0
,
pool_type
=
'avg'
,
global_pooling
=
True
)
input
=
input
,
pool_size
=
0
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
squeeze
=
fluid
.
layers
.
fc
(
input
=
pool
,
squeeze
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
num_channels
/
reduction_ratio
,
size
=
num_channels
/
/
reduction_ratio
,
act
=
'relu'
,
act
=
'relu'
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
initializer
=
fluid
.
initializer
.
Uniform
(
...
...
PaddleCV/image_classification/reader_cv2.py
浏览文件 @
503ebb48
...
@@ -81,8 +81,8 @@ def crop_image(img, target_size, center):
...
@@ -81,8 +81,8 @@ def crop_image(img, target_size, center):
height
,
width
=
img
.
shape
[:
2
]
height
,
width
=
img
.
shape
[:
2
]
size
=
target_size
size
=
target_size
if
center
==
True
:
if
center
==
True
:
w_start
=
(
width
-
size
)
/
2
w_start
=
(
width
-
size
)
/
/
2
h_start
=
(
height
-
size
)
/
2
h_start
=
(
height
-
size
)
/
/
2
else
:
else
:
w_start
=
np
.
random
.
randint
(
0
,
width
-
size
+
1
)
w_start
=
np
.
random
.
randint
(
0
,
width
-
size
+
1
)
h_start
=
np
.
random
.
randint
(
0
,
height
-
size
+
1
)
h_start
=
np
.
random
.
randint
(
0
,
height
-
size
+
1
)
...
...
PaddleCV/image_classification/run.sh
100755 → 100644
浏览文件 @
503ebb48
...
@@ -15,143 +15,141 @@ python train.py \
...
@@ -15,143 +15,141 @@ python train.py \
# >log_SE_ResNeXt50_32x4d.txt 2>&1 &
# >log_SE_ResNeXt50_32x4d.txt 2>&1 &
#SE_154
#SE_154
"""
#python train.py \
python train.py
\
# --model=SE_154_vd \
--model=SE_154_vd
\
# --batch_size=256 \
--batch_size=256
\
# --total_images=1281167 \
--total_images=1281167
\
# --image_shape=3,224,224 \
--image_shape=3,224,224
\
# --input_dtype=float32 \
--input_dtype=float32
\
# --class_dim=1000 \
--class_dim=1000
\
# --lr_strategy=cosine_decay \
--lr_strategy=cosine_decay
\
# --lr=0.1 \
--lr=0.1
\
# --num_epochs=200 \
--num_epochs=200
\
# --with_mem_opt=True \
--with_mem_opt=True
\
# --model_save_dir=output/ \
--model_save_dir=output/
\
# --l2_decay=1e-4 \
--l2_decay=1e-4
\
# --use_mixup=True \
--use_mixup=True
\
# --use_label_smoothing=True \
--use_label_smoothing=True
\
# --label_smoothing_epsilon=0.1 \
--label_smoothing_epsilon=0.1
\
#ResNeXt101_64x4d
#ResNeXt101_64x4d
python train.py
\
#
python train.py \
--model=ResNeXt101_64x4d
\
#
--model=ResNeXt101_64x4d \
--batch_size=256
\
#
--batch_size=256 \
--total_images=1281167
\
#
--total_images=1281167 \
--image_shape=3,224,224
\
#
--image_shape=3,224,224 \
--input_dtype=float32
\
#
--input_dtype=float32 \
--class_dim=1000
\
#
--class_dim=1000 \
--lr_strategy=piecewise_decay
\
#
--lr_strategy=piecewise_decay \
--lr=0.1
\
#
--lr=0.1 \
--num_epochs=120
\
#
--num_epochs=120 \
--with_mem_opt=True
\
#
--with_mem_opt=True \
--model_save_dir=output/
\
#
--model_save_dir=output/ \
--l2_decay=15e-5
#
--l2_decay=15e-5
python train.py
\
#
python train.py \
#ResNeXt101_vd_64x4d
#ResNeXt101_vd_64x4d
--model=ResNeXt101_vd_64x4d
\
#
--model=ResNeXt101_vd_64x4d \
--batch_size=256
\
#
--batch_size=256 \
--total_images=1281167
\
#
--total_images=1281167 \
--image_shape=3,224,224
\
#
--image_shape=3,224,224 \
--input_dtype=float32
\
#
--input_dtype=float32 \
--class_dim=1000
\
#
--class_dim=1000 \
--lr_strategy=cosine_decay
\
#
--lr_strategy=cosine_decay \
--lr=0.1
\
#
--lr=0.1 \
--num_epochs=200
\
#
--num_epochs=200 \
--with_mem_opt=True
\
#
--with_mem_opt=True \
--model_save_dir=output/
\
#
--model_save_dir=output/ \
--l2_decay=1e-4
\
#
--l2_decay=1e-4 \
--use_mixup=True
\
#
--use_mixup=True \
--use_label_smoothing=True
\
#
--use_label_smoothing=True \
--label_smoothing_epsilon=0.1
#
--label_smoothing_epsilon=0.1
#InceptionV4
#InceptionV4
python train.py
#
python train.py
--model=InceptionV4
\
#
--model=InceptionV4 \
--batch_size=256
\
#
--batch_size=256 \
--total_images=1281167
\
#
--total_images=1281167 \
--image_shape=3,299,299
\
#
--image_shape=3,299,299 \
--input_dtype=float32
\
#
--input_dtype=float32 \
--class_dim=1000
\
#
--class_dim=1000 \
--lr_strategy=cosine_decay
\
#
--lr_strategy=cosine_decay \
--lr=0.045
\
#
--lr=0.045 \
--num_epochs=200
\
#
--num_epochs=200 \
--with_mem_opt=True
\
#
--with_mem_opt=True \
--model_save_dir=output/
\
#
--model_save_dir=output/ \
--l2_decay=1e-4
\
#
--l2_decay=1e-4 \
--use_mixup=True
\
#
--use_mixup=True \
--resize_short_size=320
\
#
--resize_short_size=320 \
--use_label_smoothing=True
\
#
--use_label_smoothing=True \
--label_smoothing_epsilon=0.1
\
#
--label_smoothing_epsilon=0.1 \
#ResNet152_vd
#ResNet152_vd
python train.py
#
python train.py
--model=ResNet152_vd
\
#
--model=ResNet152_vd \
--batch_size=256
\
#
--batch_size=256 \
--total_images=1281167
\
#
--total_images=1281167 \
--image_shape=3,224,224
\
#
--image_shape=3,224,224 \
--input_dtype=float32
\
#
--input_dtype=float32 \
--class_dim=1000
\
#
--class_dim=1000 \
--lr_strategy=cosine_decay
\
#
--lr_strategy=cosine_decay \
--lr=0.1
\
#
--lr=0.1 \
--num_epochs=200
\
#
--num_epochs=200 \
--with_mem_opt=True
\
#
--with_mem_opt=True \
--model_save_dir=output/
\
#
--model_save_dir=output/ \
--l2_decay=1e-4
\
#
--l2_decay=1e-4 \
--use_mixup=True
\
#
--use_mixup=True \
--use_label_smoothing=True
\
#
--use_label_smoothing=True \
--label_smoothing_epsilon=0.1
#
--label_smoothing_epsilon=0.1
#ResNet200_vd
#ResNet200_vd
python train.py
#
python train.py
--model=ResNet200_vd
\
#
--model=ResNet200_vd \
--batch_size=256
\
#
--batch_size=256 \
--total_images=1281167
\
#
--total_images=1281167 \
--image_shape=3,224,224
\
#
--image_shape=3,224,224 \
--input_dtype=float32
\
#
--input_dtype=float32 \
--class_dim=1000
\
#
--class_dim=1000 \
--lr_strategy=cosine_decay
\
#
--lr_strategy=cosine_decay \
--lr=0.1
\
#
--lr=0.1 \
--num_epochs=200
\
#
--num_epochs=200 \
--with_mem_opt=True
\
#
--with_mem_opt=True \
--model_save_dir=output/
\
#
--model_save_dir=output/ \
--l2_decay=1e-4
\
#
--l2_decay=1e-4 \
--use_mixup=True
\
#
--use_mixup=True \
--use_label_smoothing=True
\
#
--use_label_smoothing=True \
--label_smoothing_epsilon=0.1
#
--label_smoothing_epsilon=0.1
#ResNet50_vd
#ResNet50_vd
python train.py
#
python train.py
--model=ResNet50_vd
\
#
--model=ResNet50_vd \
--batch_size=256
\
#
--batch_size=256 \
--total_images=1281167
\
#
--total_images=1281167 \
--image_shape=3,224,224
\
#
--image_shape=3,224,224 \
--input_dtype=float32
\
#
--input_dtype=float32 \
--class_dim=1000
\
#
--class_dim=1000 \
--lr_strategy=cosine_decay
\
#
--lr_strategy=cosine_decay \
--lr=0.1
\
#
--lr=0.1 \
--num_epochs=200
\
#
--num_epochs=200 \
--with_mem_opt=True
\
#
--with_mem_opt=True \
--model_save_dir=output/
\
#
--model_save_dir=output/ \
--l2_decay=7e-5
\
#
--l2_decay=7e-5 \
--use_mixup=True
\
#
--use_mixup=True \
--use_label_smoothing=True
\
#
--use_label_smoothing=True \
--label_smoothing_epsilon=0.1
#
--label_smoothing_epsilon=0.1
#ResNet50_vc
#ResNet50_vc
python train.py
#python train.py
--model=ResNet50_vc
\
# --model=ResNet50_vc \
--batch_size=256
\
# --batch_size=256 \
--total_images=1281167
\
# --total_images=1281167 \
--image_shape=3,224,224
\
# --image_shape=3,224,224 \
--input_dtype=float32
\
# --input_dtype=float32 \
--class_dim=1000
\
# --class_dim=1000 \
--lr_strategy=cosine_decay
\
# --lr_strategy=cosine_decay \
--lr=0.1
\
# --lr=0.1 \
--num_epochs=200
\
# --num_epochs=200 \
--with_mem_opt=True
\
# --with_mem_opt=True \
--model_save_dir=output/
\
# --model_save_dir=output/ \
--l2_decay=1e-4
\
# --l2_decay=1e-4 \
"""
#AlexNet:
#AlexNet:
#python train.py \
#python train.py \
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录