Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
503ebb48
M
models
项目概览
PaddlePaddle
/
models
接近 2 年 前同步成功
通知
230
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
503ebb48
编写于
6月 18, 2019
作者:
R
ruri
提交者:
GitHub
6月 18, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix py3 bugs (#2437)
上级
dc8813aa
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
135 addition
and
146 deletion
+135
-146
PaddleCV/image_classification/README.md
PaddleCV/image_classification/README.md
+3
-3
PaddleCV/image_classification/README_cn.md
PaddleCV/image_classification/README_cn.md
+3
-3
PaddleCV/image_classification/eval.py
PaddleCV/image_classification/eval.py
+1
-5
PaddleCV/image_classification/infer.py
PaddleCV/image_classification/infer.py
+1
-6
PaddleCV/image_classification/models/se_resnext_vd.py
PaddleCV/image_classification/models/se_resnext_vd.py
+2
-2
PaddleCV/image_classification/reader_cv2.py
PaddleCV/image_classification/reader_cv2.py
+2
-2
PaddleCV/image_classification/run.sh
PaddleCV/image_classification/run.sh
+123
-125
未找到文件。
PaddleCV/image_classification/README.md
浏览文件 @
503ebb48
...
...
@@ -167,13 +167,13 @@ Available top-1/top-5 validation accuracy on ImageNet 2012 are listed in table.
|
[
ResNet101_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
)
| 79.44%/94.47% |
|
[
ResNet152
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.tar
)
| 78.26%/93.96% |
|
[
ResNet152_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_vd_pretrained.tar
)
| 80.59%/95.30% |
|
[
ResNet200_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet
152
_vd_pretrained.tar
)
| 80.93%/95.33% |
|
[
ResNet200_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet
200
_vd_pretrained.tar
)
| 80.93%/95.33% |
|
[
ResNeXt101_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_64x4d_pretrained.tar
)
| 79.35%/94.52% |
|
[
ResNeXt101_vd_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar
)
| 80.78%/95.20% |
|
[
SE_ResNeXt50_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar
)
| 78.44%/93.96% |
|
[
SE_ResNeXt101_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar
)
| 79.12%/94.20% |
|
[
SE154_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE154_vd_pretrained.tar
)
| 81.4
5%/95.49
% |
|
[
SE154_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE154_vd_pretrained.tar
)
| 81.4
0%/95.48
% |
|
[
GoogleNet
](
https://paddle-imagenet-models-name.bj.bcebos.com/GoogleNet_pretrained.tar
)
| 70.70%/89.66% |
|
[
ShuffleNetV2
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar
)
| 70.03%/89.17% |
|
[
InceptionV4
](
https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar
)
| 80.
88%/95.28
% |
|
[
InceptionV4
](
https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar
)
| 80.
77%/95.26
% |
PaddleCV/image_classification/README_cn.md
浏览文件 @
503ebb48
...
...
@@ -163,12 +163,12 @@ python infer.py \
|
[
ResNet101_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
)
| 79.44%/94.47% |
|
[
ResNet152
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.tar
)
| 78.26%/93.96% |
|
[
ResNet152_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_vd_pretrained.tar
)
| 80.59%/95.30% |
|
[
ResNet200_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet
152
_vd_pretrained.tar
)
| 80.93%/95.33% |
|
[
ResNet200_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet
200
_vd_pretrained.tar
)
| 80.93%/95.33% |
|
[
ResNeXt101_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_64x4d_pretrained.tar
)
| 79.35%/94.52% |
|
[
ResNeXt101_vd_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar
)
| 80.78%/95.20% |
|
[
SE_ResNeXt50_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar
)
| 78.44%/93.96% |
|
[
SE_ResNeXt101_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar
)
| 79.12%/94.20% |
|
[
SE154_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE154_vd_pretrained.tar
)
| 81.4
5%/95.49
% |
|
[
SE154_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE154_vd_pretrained.tar
)
| 81.4
0%/95.48
% |
|
[
GoogleNet
](
https://paddle-imagenet-models-name.bj.bcebos.com/GoogleNet_pretrained.tar
)
| 70.70%/89.66% |
|
[
ShuffleNetV2
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar
)
| 70.03%/89.17% |
|
[
InceptionV4
](
https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar
)
| 80.
88%/95.28
% |
|
[
InceptionV4
](
https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar
)
| 80.
77%/95.26
% |
PaddleCV/image_classification/eval.py
浏览文件 @
503ebb48
...
...
@@ -77,12 +77,8 @@ def eval(args):
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
if
pretrained_model
:
def
if_exist
(
var
):
return
os
.
path
.
exists
(
os
.
path
.
join
(
pretrained_model
,
var
.
name
))
fluid
.
io
.
load_vars
(
exe
,
pretrained_model
,
predicate
=
if_exist
)
fluid
.
io
.
load_persistables
(
exe
,
pretrained_model
)
val_reader
=
paddle
.
batch
(
reader
.
val
(
settings
=
args
),
batch_size
=
args
.
batch_size
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
image
,
label
])
...
...
PaddleCV/image_classification/infer.py
浏览文件 @
503ebb48
...
...
@@ -61,12 +61,7 @@ def infer(args):
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
if
pretrained_model
:
def
if_exist
(
var
):
return
os
.
path
.
exists
(
os
.
path
.
join
(
pretrained_model
,
var
.
name
))
fluid
.
io
.
load_vars
(
exe
,
pretrained_model
,
predicate
=
if_exist
)
fluid
.
io
.
load_persistables
(
exe
,
pretrained_model
)
if
save_inference
:
fluid
.
io
.
save_inference_model
(
dirname
=
model_name
,
...
...
PaddleCV/image_classification/models/se_resnext_vd.py
浏览文件 @
503ebb48
...
...
@@ -147,7 +147,7 @@ class SE_ResNeXt():
act
=
'relu'
,
name
=
'conv'
+
name
+
'_x2'
)
if
cardinality
==
64
:
num_filters
=
num_filters
/
2
num_filters
=
num_filters
/
/
2
conv2
=
self
.
conv_bn_layer
(
input
=
conv1
,
num_filters
=
num_filters
*
2
,
filter_size
=
1
,
act
=
None
,
name
=
'conv'
+
name
+
'_x3'
)
scale
=
self
.
squeeze_excitation
(
...
...
@@ -224,7 +224,7 @@ class SE_ResNeXt():
input
=
input
,
pool_size
=
0
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
squeeze
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
num_channels
/
reduction_ratio
,
size
=
num_channels
/
/
reduction_ratio
,
act
=
'relu'
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
...
...
PaddleCV/image_classification/reader_cv2.py
浏览文件 @
503ebb48
...
...
@@ -81,8 +81,8 @@ def crop_image(img, target_size, center):
height
,
width
=
img
.
shape
[:
2
]
size
=
target_size
if
center
==
True
:
w_start
=
(
width
-
size
)
/
2
h_start
=
(
height
-
size
)
/
2
w_start
=
(
width
-
size
)
/
/
2
h_start
=
(
height
-
size
)
/
/
2
else
:
w_start
=
np
.
random
.
randint
(
0
,
width
-
size
+
1
)
h_start
=
np
.
random
.
randint
(
0
,
height
-
size
+
1
)
...
...
PaddleCV/image_classification/run.sh
100755 → 100644
浏览文件 @
503ebb48
...
...
@@ -15,143 +15,141 @@ python train.py \
# >log_SE_ResNeXt50_32x4d.txt 2>&1 &
#SE_154
"""
python train.py
\
--model=SE_154_vd
\
--batch_size=256
\
--total_images=1281167
\
--image_shape=3,224,224
\
--input_dtype=float32
\
--class_dim=1000
\
--lr_strategy=cosine_decay
\
--lr=0.1
\
--num_epochs=200
\
--with_mem_opt=True
\
--model_save_dir=output/
\
--l2_decay=1e-4
\
--use_mixup=True
\
--use_label_smoothing=True
\
--label_smoothing_epsilon=0.1
\
#python train.py \
# --model=SE_154_vd \
# --batch_size=256 \
# --total_images=1281167 \
# --image_shape=3,224,224 \
# --input_dtype=float32 \
# --class_dim=1000 \
# --lr_strategy=cosine_decay \
# --lr=0.1 \
# --num_epochs=200 \
# --with_mem_opt=True \
# --model_save_dir=output/ \
# --l2_decay=1e-4 \
# --use_mixup=True \
# --use_label_smoothing=True \
# --label_smoothing_epsilon=0.1 \
#ResNeXt101_64x4d
python train.py
\
--model=ResNeXt101_64x4d
\
--batch_size=256
\
--total_images=1281167
\
--image_shape=3,224,224
\
--input_dtype=float32
\
--class_dim=1000
\
--lr_strategy=piecewise_decay
\
--lr=0.1
\
--num_epochs=120
\
--with_mem_opt=True
\
--model_save_dir=output/
\
--l2_decay=15e-5
#
python train.py \
#
--model=ResNeXt101_64x4d \
#
--batch_size=256 \
#
--total_images=1281167 \
#
--image_shape=3,224,224 \
#
--input_dtype=float32 \
#
--class_dim=1000 \
#
--lr_strategy=piecewise_decay \
#
--lr=0.1 \
#
--num_epochs=120 \
#
--with_mem_opt=True \
#
--model_save_dir=output/ \
#
--l2_decay=15e-5
python train.py
\
#
python train.py \
#ResNeXt101_vd_64x4d
--model=ResNeXt101_vd_64x4d
\
--batch_size=256
\
--total_images=1281167
\
--image_shape=3,224,224
\
--input_dtype=float32
\
--class_dim=1000
\
--lr_strategy=cosine_decay
\
--lr=0.1
\
--num_epochs=200
\
--with_mem_opt=True
\
--model_save_dir=output/
\
--l2_decay=1e-4
\
--use_mixup=True
\
--use_label_smoothing=True
\
--label_smoothing_epsilon=0.1
#
--model=ResNeXt101_vd_64x4d \
#
--batch_size=256 \
#
--total_images=1281167 \
#
--image_shape=3,224,224 \
#
--input_dtype=float32 \
#
--class_dim=1000 \
#
--lr_strategy=cosine_decay \
#
--lr=0.1 \
#
--num_epochs=200 \
#
--with_mem_opt=True \
#
--model_save_dir=output/ \
#
--l2_decay=1e-4 \
#
--use_mixup=True \
#
--use_label_smoothing=True \
#
--label_smoothing_epsilon=0.1
#InceptionV4
python train.py
--model=InceptionV4
\
--batch_size=256
\
--total_images=1281167
\
--image_shape=3,299,299
\
--input_dtype=float32
\
--class_dim=1000
\
--lr_strategy=cosine_decay
\
--lr=0.045
\
--num_epochs=200
\
--with_mem_opt=True
\
--model_save_dir=output/
\
--l2_decay=1e-4
\
--use_mixup=True
\
--resize_short_size=320
\
--use_label_smoothing=True
\
--label_smoothing_epsilon=0.1
\
#
python train.py
#
--model=InceptionV4 \
#
--batch_size=256 \
#
--total_images=1281167 \
#
--image_shape=3,299,299 \
#
--input_dtype=float32 \
#
--class_dim=1000 \
#
--lr_strategy=cosine_decay \
#
--lr=0.045 \
#
--num_epochs=200 \
#
--with_mem_opt=True \
#
--model_save_dir=output/ \
#
--l2_decay=1e-4 \
#
--use_mixup=True \
#
--resize_short_size=320 \
#
--use_label_smoothing=True \
#
--label_smoothing_epsilon=0.1 \
#ResNet152_vd
python train.py
--model=ResNet152_vd
\
--batch_size=256
\
--total_images=1281167
\
--image_shape=3,224,224
\
--input_dtype=float32
\
--class_dim=1000
\
--lr_strategy=cosine_decay
\
--lr=0.1
\
--num_epochs=200
\
--with_mem_opt=True
\
--model_save_dir=output/
\
--l2_decay=1e-4
\
--use_mixup=True
\
--use_label_smoothing=True
\
--label_smoothing_epsilon=0.1
#
python train.py
#
--model=ResNet152_vd \
#
--batch_size=256 \
#
--total_images=1281167 \
#
--image_shape=3,224,224 \
#
--input_dtype=float32 \
#
--class_dim=1000 \
#
--lr_strategy=cosine_decay \
#
--lr=0.1 \
#
--num_epochs=200 \
#
--with_mem_opt=True \
#
--model_save_dir=output/ \
#
--l2_decay=1e-4 \
#
--use_mixup=True \
#
--use_label_smoothing=True \
#
--label_smoothing_epsilon=0.1
#ResNet200_vd
python train.py
--model=ResNet200_vd
\
--batch_size=256
\
--total_images=1281167
\
--image_shape=3,224,224
\
--input_dtype=float32
\
--class_dim=1000
\
--lr_strategy=cosine_decay
\
--lr=0.1
\
--num_epochs=200
\
--with_mem_opt=True
\
--model_save_dir=output/
\
--l2_decay=1e-4
\
--use_mixup=True
\
--use_label_smoothing=True
\
--label_smoothing_epsilon=0.1
#
python train.py
#
--model=ResNet200_vd \
#
--batch_size=256 \
#
--total_images=1281167 \
#
--image_shape=3,224,224 \
#
--input_dtype=float32 \
#
--class_dim=1000 \
#
--lr_strategy=cosine_decay \
#
--lr=0.1 \
#
--num_epochs=200 \
#
--with_mem_opt=True \
#
--model_save_dir=output/ \
#
--l2_decay=1e-4 \
#
--use_mixup=True \
#
--use_label_smoothing=True \
#
--label_smoothing_epsilon=0.1
#ResNet50_vd
python train.py
--model=ResNet50_vd
\
--batch_size=256
\
--total_images=1281167
\
--image_shape=3,224,224
\
--input_dtype=float32
\
--class_dim=1000
\
--lr_strategy=cosine_decay
\
--lr=0.1
\
--num_epochs=200
\
--with_mem_opt=True
\
--model_save_dir=output/
\
--l2_decay=7e-5
\
--use_mixup=True
\
--use_label_smoothing=True
\
--label_smoothing_epsilon=0.1
#
python train.py
#
--model=ResNet50_vd \
#
--batch_size=256 \
#
--total_images=1281167 \
#
--image_shape=3,224,224 \
#
--input_dtype=float32 \
#
--class_dim=1000 \
#
--lr_strategy=cosine_decay \
#
--lr=0.1 \
#
--num_epochs=200 \
#
--with_mem_opt=True \
#
--model_save_dir=output/ \
#
--l2_decay=7e-5 \
#
--use_mixup=True \
#
--use_label_smoothing=True \
#
--label_smoothing_epsilon=0.1
#ResNet50_vc
python train.py
--model=ResNet50_vc
\
--batch_size=256
\
--total_images=1281167
\
--image_shape=3,224,224
\
--input_dtype=float32
\
--class_dim=1000
\
--lr_strategy=cosine_decay
\
--lr=0.1
\
--num_epochs=200
\
--with_mem_opt=True
\
--model_save_dir=output/
\
--l2_decay=1e-4
\
"""
#python train.py
# --model=ResNet50_vc \
# --batch_size=256 \
# --total_images=1281167 \
# --image_shape=3,224,224 \
# --input_dtype=float32 \
# --class_dim=1000 \
# --lr_strategy=cosine_decay \
# --lr=0.1 \
# --num_epochs=200 \
# --with_mem_opt=True \
# --model_save_dir=output/ \
# --l2_decay=1e-4 \
#AlexNet:
#python train.py \
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录