Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
493e8e86
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
493e8e86
编写于
11月 10, 2017
作者:
Y
Yang yaming
提交者:
GitHub
11月 10, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #444 from pkuyym/fix-442
Support padding removing.
上级
060480f2
205bd10d
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
114 addition
and
22 deletion
+114
-22
deep_speech_2/data_utils/data.py
deep_speech_2/data_utils/data.py
+39
-3
deep_speech_2/infer.py
deep_speech_2/infer.py
+5
-3
deep_speech_2/model_utils/model.py
deep_speech_2/model_utils/model.py
+26
-4
deep_speech_2/model_utils/network.py
deep_speech_2/model_utils/network.py
+35
-7
deep_speech_2/test.py
deep_speech_2/test.py
+5
-3
deep_speech_2/train.py
deep_speech_2/train.py
+4
-2
未找到文件。
deep_speech_2/data_utils/data.py
浏览文件 @
493e8e86
...
...
@@ -60,6 +60,9 @@ class DataGenerator(object):
be passed forward directly without
converting to index sequence.
:type keep_transcription_text: bool
:param num_conv_layers: The number of convolution layer, used to compute
the sequence length.
:type num_conv_layers: int
"""
def
__init__
(
self
,
...
...
@@ -75,7 +78,8 @@ class DataGenerator(object):
use_dB_normalization
=
True
,
num_threads
=
multiprocessing
.
cpu_count
()
//
2
,
random_seed
=
0
,
keep_transcription_text
=
False
):
keep_transcription_text
=
False
,
num_conv_layers
=
2
):
self
.
_max_duration
=
max_duration
self
.
_min_duration
=
min_duration
self
.
_normalizer
=
FeatureNormalizer
(
mean_std_filepath
)
...
...
@@ -96,6 +100,7 @@ class DataGenerator(object):
self
.
_local_data
=
local
()
self
.
_local_data
.
tar2info
=
{}
self
.
_local_data
.
tar2object
=
{}
self
.
_num_conv_layers
=
num_conv_layers
def
process_utterance
(
self
,
filename
,
transcript
):
"""Load, augment, featurize and normalize for speech data.
...
...
@@ -214,7 +219,15 @@ class DataGenerator(object):
:return: Data feeding dict.
:rtype: dict
"""
return
{
"audio_spectrogram"
:
0
,
"transcript_text"
:
1
}
feeding_dict
=
{
"audio_spectrogram"
:
0
,
"transcript_text"
:
1
,
"sequence_offset"
:
2
,
"sequence_length"
:
3
}
for
i
in
xrange
(
self
.
_num_conv_layers
):
feeding_dict
[
"conv%d_index_range"
%
i
]
=
len
(
feeding_dict
)
return
feeding_dict
@
property
def
vocab_size
(
self
):
...
...
@@ -312,7 +325,30 @@ class DataGenerator(object):
padded_audio
[:,
:
audio
.
shape
[
1
]]
=
audio
if
flatten
:
padded_audio
=
padded_audio
.
flatten
()
new_batch
.
append
((
padded_audio
,
text
))
# Stride size for conv0 is (3, 2)
# Stride size for conv1 to convN is (1, 2)
# Same as the network, hard-coded here
padded_instance
=
[
padded_audio
,
text
]
padded_conv0_h
=
(
padded_audio
.
shape
[
0
]
-
1
)
//
2
+
1
padded_conv0_w
=
(
padded_audio
.
shape
[
1
]
-
1
)
//
3
+
1
valid_w
=
(
audio
.
shape
[
1
]
-
1
)
//
3
+
1
padded_instance
+=
[
[
0
],
# sequence offset, always 0
[
valid_w
],
# valid sequence length
# Index ranges for channel, height and width
# Please refer scale_sub_region layer to see details
[
1
,
32
,
1
,
padded_conv0_h
,
valid_w
+
1
,
padded_conv0_w
]
]
pre_padded_h
=
padded_conv0_h
for
i
in
xrange
(
self
.
_num_conv_layers
-
1
):
padded_h
=
(
pre_padded_h
-
1
)
//
2
+
1
pre_padded_h
=
padded_h
padded_instance
+=
[
[
1
,
32
,
1
,
padded_h
,
valid_w
+
1
,
padded_conv0_w
]
]
new_batch
.
append
(
padded_instance
)
return
new_batch
def
_batch_shuffle
(
self
,
manifest
,
batch_size
,
clipped
=
False
):
...
...
deep_speech_2/infer.py
浏览文件 @
493e8e86
...
...
@@ -69,7 +69,8 @@ def infer():
augmentation_config
=
'{}'
,
specgram_type
=
args
.
specgram_type
,
num_threads
=
1
,
keep_transcription_text
=
True
)
keep_transcription_text
=
True
,
num_conv_layers
=
args
.
num_conv_layers
)
batch_reader
=
data_generator
.
batch_reader_creator
(
manifest_path
=
args
.
infer_manifest
,
batch_size
=
args
.
num_samples
,
...
...
@@ -100,10 +101,11 @@ def infer():
cutoff_top_n
=
args
.
cutoff_top_n
,
vocab_list
=
vocab_list
,
language_model_path
=
args
.
lang_model_path
,
num_processes
=
args
.
num_proc_bsearch
)
num_processes
=
args
.
num_proc_bsearch
,
feeding_dict
=
data_generator
.
feeding
)
error_rate_func
=
cer
if
args
.
error_rate_type
==
'cer'
else
wer
target_transcripts
=
[
transcript
for
_
,
transcript
in
infer_data
]
target_transcripts
=
[
data
[
1
]
for
data
in
infer_data
]
for
target
,
result
in
zip
(
target_transcripts
,
result_transcripts
):
print
(
"
\n
Target Transcription: %s
\n
Output Transcription: %s"
%
(
target
,
result
))
...
...
deep_speech_2/model_utils/model.py
浏览文件 @
493e8e86
...
...
@@ -165,7 +165,7 @@ class DeepSpeech2Model(object):
def
infer_batch
(
self
,
infer_data
,
decoding_method
,
beam_alpha
,
beam_beta
,
beam_size
,
cutoff_prob
,
cutoff_top_n
,
vocab_list
,
language_model_path
,
num_processes
):
language_model_path
,
num_processes
,
feeding_dict
):
"""Model inference. Infer the transcription for a batch of speech
utterances.
...
...
@@ -195,6 +195,9 @@ class DeepSpeech2Model(object):
:type language_model_path: basestring|None
:param num_processes: Number of processes (CPU) for decoder.
:type num_processes: int
:param feeding_dict: Feeding is a map of field name and tuple index
of the data that reader returns.
:type feeding_dict: dict|list
:return: List of transcription texts.
:rtype: List of basestring
"""
...
...
@@ -203,10 +206,13 @@ class DeepSpeech2Model(object):
self
.
_inferer
=
paddle
.
inference
.
Inference
(
output_layer
=
self
.
_log_probs
,
parameters
=
self
.
_parameters
)
# run inference
infer_results
=
self
.
_inferer
.
infer
(
input
=
infer_data
)
num_steps
=
len
(
infer_results
)
//
len
(
infer_data
)
infer_results
=
self
.
_inferer
.
infer
(
input
=
infer_data
,
feeding
=
feeding_dict
)
start_pos
=
[
0
]
*
(
len
(
infer_data
)
+
1
)
for
i
in
xrange
(
len
(
infer_data
)):
start_pos
[
i
+
1
]
=
start_pos
[
i
]
+
infer_data
[
i
][
3
][
0
]
probs_split
=
[
infer_results
[
i
*
num_steps
:(
i
+
1
)
*
num_steps
]
infer_results
[
start_pos
[
i
]:
start_pos
[
i
+
1
]
]
for
i
in
xrange
(
0
,
len
(
infer_data
))
]
# run decoder
...
...
@@ -274,9 +280,25 @@ class DeepSpeech2Model(object):
text_data
=
paddle
.
layer
.
data
(
name
=
"transcript_text"
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
vocab_size
))
seq_offset_data
=
paddle
.
layer
.
data
(
name
=
'sequence_offset'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
1
))
seq_len_data
=
paddle
.
layer
.
data
(
name
=
'sequence_length'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
1
))
index_range_datas
=
[]
for
i
in
xrange
(
num_rnn_layers
):
index_range_datas
.
append
(
paddle
.
layer
.
data
(
name
=
'conv%d_index_range'
%
i
,
type
=
paddle
.
data_type
.
dense_vector
(
6
)))
self
.
_log_probs
,
self
.
_loss
=
deep_speech_v2_network
(
audio_data
=
audio_data
,
text_data
=
text_data
,
seq_offset_data
=
seq_offset_data
,
seq_len_data
=
seq_len_data
,
index_range_datas
=
index_range_datas
,
dict_size
=
vocab_size
,
num_conv_layers
=
num_conv_layers
,
num_rnn_layers
=
num_rnn_layers
,
...
...
deep_speech_2/model_utils/network.py
浏览文件 @
493e8e86
...
...
@@ -7,7 +7,7 @@ import paddle.v2 as paddle
def
conv_bn_layer
(
input
,
filter_size
,
num_channels_in
,
num_channels_out
,
stride
,
padding
,
act
):
padding
,
act
,
index_range_data
):
"""Convolution layer with batch normalization.
:param input: Input layer.
...
...
@@ -24,6 +24,8 @@ def conv_bn_layer(input, filter_size, num_channels_in, num_channels_out, stride,
:type padding: int|tuple|list
:param act: Activation type.
:type act: BaseActivation
:param index_range_data: Index range to indicate sub region.
:type index_range_data: LayerOutput
:return: Batch norm layer after convolution layer.
:rtype: LayerOutput
"""
...
...
@@ -36,7 +38,11 @@ def conv_bn_layer(input, filter_size, num_channels_in, num_channels_out, stride,
padding
=
padding
,
act
=
paddle
.
activation
.
Linear
(),
bias_attr
=
False
)
return
paddle
.
layer
.
batch_norm
(
input
=
conv_layer
,
act
=
act
)
batch_norm
=
paddle
.
layer
.
batch_norm
(
input
=
conv_layer
,
act
=
act
)
# reset padding part to 0
scale_sub_region
=
paddle
.
layer
.
scale_sub_region
(
batch_norm
,
index_range_data
,
value
=
0.0
)
return
scale_sub_region
def
bidirectional_simple_rnn_bn_layer
(
name
,
input
,
size
,
act
,
share_weights
):
...
...
@@ -136,13 +142,15 @@ def bidirectional_gru_bn_layer(name, input, size, act):
return
paddle
.
layer
.
concat
(
input
=
[
forward_gru
,
backward_gru
])
def
conv_group
(
input
,
num_stacks
):
def
conv_group
(
input
,
num_stacks
,
index_range_datas
):
"""Convolution group with stacked convolution layers.
:param input: Input layer.
:type input: LayerOutput
:param num_stacks: Number of stacked convolution layers.
:type num_stacks: int
:param index_range_datas: Index ranges for each convolution layer.
:type index_range_datas: tuple|list
:return: Output layer of the convolution group.
:rtype: LayerOutput
"""
...
...
@@ -153,7 +161,8 @@ def conv_group(input, num_stacks):
num_channels_out
=
32
,
stride
=
(
3
,
2
),
padding
=
(
5
,
20
),
act
=
paddle
.
activation
.
BRelu
())
act
=
paddle
.
activation
.
BRelu
(),
index_range_data
=
index_range_datas
[
0
])
for
i
in
xrange
(
num_stacks
-
1
):
conv
=
conv_bn_layer
(
input
=
conv
,
...
...
@@ -162,7 +171,8 @@ def conv_group(input, num_stacks):
num_channels_out
=
32
,
stride
=
(
1
,
2
),
padding
=
(
5
,
10
),
act
=
paddle
.
activation
.
BRelu
())
act
=
paddle
.
activation
.
BRelu
(),
index_range_data
=
index_range_datas
[
i
+
1
])
output_num_channels
=
32
output_height
=
160
//
pow
(
2
,
num_stacks
)
+
1
return
conv
,
output_num_channels
,
output_height
...
...
@@ -207,6 +217,9 @@ def rnn_group(input, size, num_stacks, use_gru, share_rnn_weights):
def
deep_speech_v2_network
(
audio_data
,
text_data
,
seq_offset_data
,
seq_len_data
,
index_range_datas
,
dict_size
,
num_conv_layers
=
2
,
num_rnn_layers
=
3
,
...
...
@@ -219,6 +232,12 @@ def deep_speech_v2_network(audio_data,
:type audio_data: LayerOutput
:param text_data: Transcription text data layer.
:type text_data: LayerOutput
:param seq_offset_data: Sequence offset data layer.
:type seq_offset_data: LayerOutput
:param seq_len_data: Valid sequence length data layer.
:type seq_len_data: LayerOutput
:param index_range_datas: Index ranges data layers.
:type index_range_datas: tuple|list
:param dict_size: Dictionary size for tokenized transcription.
:type dict_size: int
:param num_conv_layers: Number of stacking convolution layers.
...
...
@@ -239,7 +258,9 @@ def deep_speech_v2_network(audio_data,
"""
# convolution group
conv_group_output
,
conv_group_num_channels
,
conv_group_height
=
conv_group
(
input
=
audio_data
,
num_stacks
=
num_conv_layers
)
input
=
audio_data
,
num_stacks
=
num_conv_layers
,
index_range_datas
=
index_range_datas
)
# convert data form convolution feature map to sequence of vectors
conv2seq
=
paddle
.
layer
.
block_expand
(
input
=
conv_group_output
,
...
...
@@ -248,9 +269,16 @@ def deep_speech_v2_network(audio_data,
stride_y
=
1
,
block_x
=
1
,
block_y
=
conv_group_height
)
# remove padding part
remove_padding_data
=
paddle
.
layer
.
sub_seq
(
input
=
conv2seq
,
offsets
=
seq_offset_data
,
sizes
=
seq_len_data
,
act
=
paddle
.
activation
.
Linear
(),
bias_attr
=
False
)
# rnn group
rnn_group_output
=
rnn_group
(
input
=
conv2seq
,
input
=
remove_padding_data
,
size
=
rnn_size
,
num_stacks
=
num_rnn_layers
,
use_gru
=
use_gru
,
...
...
deep_speech_2/test.py
浏览文件 @
493e8e86
...
...
@@ -70,7 +70,8 @@ def evaluate():
augmentation_config
=
'{}'
,
specgram_type
=
args
.
specgram_type
,
num_threads
=
args
.
num_proc_data
,
keep_transcription_text
=
True
)
keep_transcription_text
=
True
,
num_conv_layers
=
args
.
num_conv_layers
)
batch_reader
=
data_generator
.
batch_reader_creator
(
manifest_path
=
args
.
test_manifest
,
batch_size
=
args
.
batch_size
,
...
...
@@ -103,8 +104,9 @@ def evaluate():
cutoff_top_n
=
args
.
cutoff_top_n
,
vocab_list
=
vocab_list
,
language_model_path
=
args
.
lang_model_path
,
num_processes
=
args
.
num_proc_bsearch
)
target_transcripts
=
[
transcript
for
_
,
transcript
in
infer_data
]
num_processes
=
args
.
num_proc_bsearch
,
feeding_dict
=
data_generator
.
feeding
)
target_transcripts
=
[
data
[
1
]
for
data
in
infer_data
]
for
target
,
result
in
zip
(
target_transcripts
,
result_transcripts
):
error_sum
+=
error_rate_func
(
target
,
result
)
num_ins
+=
1
...
...
deep_speech_2/train.py
浏览文件 @
493e8e86
...
...
@@ -75,13 +75,15 @@ def train():
max_duration
=
args
.
max_duration
,
min_duration
=
args
.
min_duration
,
specgram_type
=
args
.
specgram_type
,
num_threads
=
args
.
num_proc_data
)
num_threads
=
args
.
num_proc_data
,
num_conv_layers
=
args
.
num_conv_layers
)
dev_generator
=
DataGenerator
(
vocab_filepath
=
args
.
vocab_path
,
mean_std_filepath
=
args
.
mean_std_path
,
augmentation_config
=
"{}"
,
specgram_type
=
args
.
specgram_type
,
num_threads
=
args
.
num_proc_data
)
num_threads
=
args
.
num_proc_data
,
num_conv_layers
=
args
.
num_conv_layers
)
train_batch_reader
=
train_generator
.
batch_reader_creator
(
manifest_path
=
args
.
train_manifest
,
batch_size
=
args
.
batch_size
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录