Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
46fc14c2
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
46fc14c2
编写于
6月 12, 2017
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update the text generation demo.
上级
4f0d8acf
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
58 addition
and
52 deletion
+58
-52
nmt_without_attention/README.md
nmt_without_attention/README.md
+18
-16
nmt_without_attention/index.html
nmt_without_attention/index.html
+18
-16
nmt_without_attention/nmt_without_attention.py
nmt_without_attention/nmt_without_attention.py
+22
-20
未找到文件。
nmt_without_attention/README.md
浏览文件 @
46fc14c2
...
...
@@ -91,11 +91,11 @@ PaddleBook中[机器翻译](https://github.com/PaddlePaddle/book/blob/develop/08
```
python
#### Decoder
encoder_last
=
paddle
.
layer
.
last_seq
(
input
=
encoded_vector
)
with
paddle
.
layer
.
mixed
(
encoder_last_projected
=
paddle
.
layer
.
mixed
(
size
=
decoder_size
,
act
=
paddle
.
activation
.
Tanh
()
)
as
encoder_last_projected
:
encoder_last_projected
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
encoder_last
)
act
=
paddle
.
activation
.
Tanh
()
,
input
=
paddle
.
layer
.
full_matrix_projection
(
input
=
encoder_last
))
# gru step
def
gru_decoder_without_attention
(
enc_vec
,
current_word
):
'''
...
...
@@ -112,10 +112,12 @@ def gru_decoder_without_attention(enc_vec, current_word):
context
=
paddle
.
layer
.
last_seq
(
input
=
enc_vec
)
with
paddle
.
layer
.
mixed
(
size
=
decoder_size
*
3
)
as
decoder_inputs
:
decoder_inputs
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
context
)
decoder_inputs
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
current_word
)
decoder_inputs
=
paddle
.
layer
.
mixed
(
size
=
decoder_size
*
3
,
input
=
[
paddle
.
layer
.
full_matrix_projection
(
input
=
context
),
paddle
.
layer
.
full_matrix_projection
(
input
=
current_word
)
])
gru_step
=
paddle
.
layer
.
gru_step
(
name
=
'gru_decoder'
,
...
...
@@ -125,24 +127,24 @@ def gru_decoder_without_attention(enc_vec, current_word):
output_mem
=
decoder_mem
,
size
=
decoder_size
)
with
paddle
.
layer
.
mixed
(
size
=
target_dict_dim
,
bias_attr
=
True
,
act
=
paddle
.
activation
.
Softmax
())
as
out
:
out
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
gru_step
)
out
=
paddle
.
layer
.
mixed
(
size
=
target_dict_dim
,
bias_attr
=
True
,
act
=
paddle
.
activation
.
Softmax
(),
input
=
paddle
.
layer
.
full_matrix_projection
(
input
=
gru_step
)
)
return
out
```
在模型训练和测试阶段,解码器的行为有很大的不同:
-
**训练阶段**
:目标翻译结果的词向量
`trg_embedding`
作为参数传递给单步逻辑
`gru_decoder_without_attention()`
,函数
`recurrent_group()`
循环调用单步逻辑执行,最后计算目标翻译与实际解码的差异cost并返回;
-
**测试阶段**
:解码器根据最后一个生成的词预测下一个词,
`GeneratedInput
V2
()`
自动取出模型预测出的概率最高的$k$个词的词向量传递给单步逻辑,
`beam_search()`
函数调用单步逻辑函数
`gru_decoder_without_attention()`
完成柱搜索并作为结果返回。
-
**测试阶段**
:解码器根据最后一个生成的词预测下一个词,
`GeneratedInput()`
自动取出模型预测出的概率最高的$k$个词的词向量传递给单步逻辑,
`beam_search()`
函数调用单步逻辑函数
`gru_decoder_without_attention()`
完成柱搜索并作为结果返回。
训练和生成的逻辑分别实现在如下的
`if-else`
条件分支中:
```
python
decoder_group_name
=
"decoder_group"
group_input1
=
paddle
.
layer
.
StaticInput
V2
(
input
=
encoded_vector
,
is_seq
=
True
)
group_input1
=
paddle
.
layer
.
StaticInput
(
input
=
encoded_vector
,
is_seq
=
True
)
group_inputs
=
[
group_input1
]
if
not
generating
:
trg_embedding
=
paddle
.
layer
.
embedding
(
...
...
@@ -166,7 +168,7 @@ if not generating:
return
cost
else
:
trg_embedding
=
paddle
.
layer
.
GeneratedInput
V2
(
trg_embedding
=
paddle
.
layer
.
GeneratedInput
(
size
=
target_dict_dim
,
embedding_name
=
'_target_language_embedding'
,
embedding_size
=
word_vector_dim
)
...
...
nmt_without_attention/index.html
浏览文件 @
46fc14c2
...
...
@@ -133,11 +133,11 @@ PaddleBook中[机器翻译](https://github.com/PaddlePaddle/book/blob/develop/08
```python
#### Decoder
encoder_last = paddle.layer.last_seq(input=encoded_vector)
with
paddle.layer.mixed(
encoder_last_projected =
paddle.layer.mixed(
size=decoder_size,
act=paddle.activation.Tanh()
) as encoder_last_projected:
encoder_last_projected += paddle.layer.full_matrix_projection(
input=encoder_last)
act=paddle.activation.Tanh()
,
input=paddle.layer.full_matrix_projection(input=encoder_last))
# gru step
def gru_decoder_without_attention(enc_vec, current_word):
'''
...
...
@@ -154,10 +154,12 @@ def gru_decoder_without_attention(enc_vec, current_word):
context = paddle.layer.last_seq(input=enc_vec)
with paddle.layer.mixed(size=decoder_size * 3) as decoder_inputs:
decoder_inputs +=paddle.layer.full_matrix_projection(input=context)
decoder_inputs += paddle.layer.full_matrix_projection(
input=current_word)
decoder_inputs = paddle.layer.mixed(
size=decoder_size * 3,
input=[
paddle.layer.full_matrix_projection(input=context),
paddle.layer.full_matrix_projection(input=current_word)
])
gru_step = paddle.layer.gru_step(
name='gru_decoder',
...
...
@@ -167,24 +169,24 @@ def gru_decoder_without_attention(enc_vec, current_word):
output_mem=decoder_mem,
size=decoder_size)
with
paddle.layer.mixed(
size=target_dict_dim,
bias_attr=True,
act=paddle.activation.Softmax()) as out:
out += paddle.layer.full_matrix_projection(input=gru_step
)
out =
paddle.layer.mixed(
size=target_dict_dim,
bias_attr=True,
act=paddle.activation.Softmax(),
input=paddle.layer.full_matrix_projection(input=gru_step)
)
return out
```
在模型训练和测试阶段,解码器的行为有很大的不同:
- **训练阶段**:目标翻译结果的词向量`trg_embedding`作为参数传递给单步逻辑`gru_decoder_without_attention()`,函数`recurrent_group()`循环调用单步逻辑执行,最后计算目标翻译与实际解码的差异cost并返回;
- **测试阶段**:解码器根据最后一个生成的词预测下一个词,`GeneratedInput
V2
()`自动取出模型预测出的概率最高的$k$个词的词向量传递给单步逻辑,`beam_search()`函数调用单步逻辑函数`gru_decoder_without_attention()`完成柱搜索并作为结果返回。
- **测试阶段**:解码器根据最后一个生成的词预测下一个词,`GeneratedInput()`自动取出模型预测出的概率最高的$k$个词的词向量传递给单步逻辑,`beam_search()`函数调用单步逻辑函数`gru_decoder_without_attention()`完成柱搜索并作为结果返回。
训练和生成的逻辑分别实现在如下的`if-else`条件分支中:
```python
decoder_group_name = "decoder_group"
group_input1 = paddle.layer.StaticInput
V2
(input=encoded_vector, is_seq=True)
group_input1 = paddle.layer.StaticInput(input=encoded_vector, is_seq=True)
group_inputs = [group_input1]
if not generating:
trg_embedding = paddle.layer.embedding(
...
...
@@ -208,7 +210,7 @@ if not generating:
return cost
else:
trg_embedding = paddle.layer.GeneratedInput
V2
(
trg_embedding = paddle.layer.GeneratedInput(
size=target_dict_dim,
embedding_name='_target_language_embedding',
embedding_size=word_vector_dim)
...
...
nmt_without_attention/nmt_without_attention.py
浏览文件 @
46fc14c2
...
...
@@ -16,7 +16,7 @@ def seq2seq_net(source_dict_dim, target_dict_dim, generating=False):
'''
Define the network structure of NMT, including encoder and decoder.
:param source_dict_dim: size of source dictionary
:param source_dict_dim: size of source dictionary
:type source_dict_dim : int
:param target_dict_dim: size of target dictionary
:type target_dict_dim: int
...
...
@@ -41,11 +41,11 @@ def seq2seq_net(source_dict_dim, target_dict_dim, generating=False):
return_seq
=
True
)
#### Decoder
encoder_last
=
paddle
.
layer
.
last_seq
(
input
=
encoded_vector
)
with
paddle
.
layer
.
mixed
(
size
=
decoder_size
,
act
=
paddle
.
activation
.
Tanh
())
as
encoder_last_projected
:
encoder_last_projected
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
encoder_last
)
encoder_last_projected
=
paddle
.
layer
.
mixed
(
size
=
decoder_size
,
act
=
paddle
.
activation
.
Tanh
(),
input
=
paddle
.
layer
.
full_matrix_projection
(
input
=
encoder_last
))
# gru step
def
gru_decoder_without_attention
(
enc_vec
,
current_word
):
'''
...
...
@@ -63,10 +63,12 @@ def seq2seq_net(source_dict_dim, target_dict_dim, generating=False):
context
=
paddle
.
layer
.
last_seq
(
input
=
enc_vec
)
with
paddle
.
layer
.
mixed
(
size
=
decoder_size
*
3
)
as
decoder_inputs
:
decoder_inputs
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
context
)
decoder_inputs
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
current_word
)
decoder_inputs
=
paddle
.
layer
.
mixed
(
size
=
decoder_size
*
3
,
input
=
[
paddle
.
layer
.
full_matrix_projection
(
input
=
context
),
paddle
.
layer
.
full_matrix_projection
(
input
=
current_word
)
])
gru_step
=
paddle
.
layer
.
gru_step
(
name
=
'gru_decoder'
,
...
...
@@ -76,15 +78,15 @@ def seq2seq_net(source_dict_dim, target_dict_dim, generating=False):
output_mem
=
decoder_mem
,
size
=
decoder_size
)
with
paddle
.
layer
.
mixed
(
size
=
target_dict_dim
,
bias_attr
=
True
,
act
=
paddle
.
activation
.
Softmax
())
as
out
:
out
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
gru_step
)
out
=
paddle
.
layer
.
mixed
(
size
=
target_dict_dim
,
bias_attr
=
True
,
act
=
paddle
.
activation
.
Softmax
(),
input
=
paddle
.
layer
.
full_matrix_projection
(
input
=
gru_step
)
)
return
out
decoder_group_name
=
"decoder_group"
group_input1
=
paddle
.
layer
.
StaticInput
V2
(
input
=
encoded_vector
,
is_seq
=
True
)
group_input1
=
paddle
.
layer
.
StaticInput
(
input
=
encoded_vector
,
is_seq
=
True
)
group_inputs
=
[
group_input1
]
if
not
generating
:
...
...
@@ -109,7 +111,7 @@ def seq2seq_net(source_dict_dim, target_dict_dim, generating=False):
return
cost
else
:
trg_embedding
=
paddle
.
layer
.
GeneratedInput
V2
(
trg_embedding
=
paddle
.
layer
.
GeneratedInput
(
size
=
target_dict_dim
,
embedding_name
=
'_target_language_embedding'
,
embedding_size
=
word_vector_dim
)
...
...
@@ -194,7 +196,7 @@ def generate(source_dict_dim, target_dict_dim, init_models_path):
beam_gen
=
seq2seq_net
(
source_dict_dim
,
target_dict_dim
,
True
)
with
gzip
.
open
(
init_models_path
)
as
f
:
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
f
)
# prob is the prediction probabilities, and id is the prediction word.
# prob is the prediction probabilities, and id is the prediction word.
beam_result
=
paddle
.
infer
(
output_layer
=
beam_gen
,
parameters
=
parameters
,
...
...
@@ -244,10 +246,10 @@ def main():
target_language_dict_dim
=
30000
if
generating
:
#
shoud pass the right generated model's path here
#
modify this path to speicify a trained model.
init_models_path
=
'models/nmt_without_att_params_batch_1800.tar.gz'
if
not
os
.
path
.
exists
(
init_models_path
):
print
"
Cannot find models for generation
"
print
"
trained model cannot be found.
"
exit
(
1
)
generate
(
source_language_dict_dim
,
target_language_dict_dim
,
init_models_path
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录