Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
46df7c44
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
46df7c44
编写于
6月 21, 2017
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add unit test for decoders
上级
40b75e35
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
159 addition
and
59 deletion
+159
-59
deep_speech_2/decoder.py
deep_speech_2/decoder.py
+0
-55
deep_speech_2/evaluate.py
deep_speech_2/evaluate.py
+2
-1
deep_speech_2/infer.py
deep_speech_2/infer.py
+3
-2
deep_speech_2/scorer.py
deep_speech_2/scorer.py
+62
-0
deep_speech_2/tests/test_decoders.py
deep_speech_2/tests/test_decoders.py
+90
-0
deep_speech_2/tune.py
deep_speech_2/tune.py
+2
-1
未找到文件。
deep_speech_2/decoder.py
浏览文件 @
46df7c44
...
...
@@ -3,10 +3,8 @@ from __future__ import absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
from
itertools
import
groupby
import
numpy
as
np
import
kenlm
import
multiprocessing
...
...
@@ -39,59 +37,6 @@ def ctc_best_path_decode(probs_seq, vocabulary):
return
''
.
join
([
vocabulary
[
index
]
for
index
in
index_list
])
class
Scorer
(
object
):
"""External defined scorer to evaluate a sentence in beam search
decoding, consisting of language model and word count.
:param alpha: Parameter associated with language model.
:type alpha: float
:param beta: Parameter associated with word count.
:type beta: float
:model_path: Path to load language model.
:type model_path: basestring
"""
def
__init__
(
self
,
alpha
,
beta
,
model_path
):
self
.
_alpha
=
alpha
self
.
_beta
=
beta
if
not
os
.
path
.
isfile
(
model_path
):
raise
IOError
(
"Invaid language model path: %s"
%
model_path
)
self
.
_language_model
=
kenlm
.
LanguageModel
(
model_path
)
# n-gram language model scoring
def
language_model_score
(
self
,
sentence
):
#log prob of last word
log_cond_prob
=
list
(
self
.
_language_model
.
full_scores
(
sentence
,
eos
=
False
))[
-
1
][
0
]
return
np
.
power
(
10
,
log_cond_prob
)
# word insertion term
def
word_count
(
self
,
sentence
):
words
=
sentence
.
strip
().
split
(
' '
)
return
len
(
words
)
# execute evaluation
def
__call__
(
self
,
sentence
,
log
=
False
):
"""Evaluation function, gathering all the scores.
:param sentence: The input sentence for evalutation
:type sentence: basestring
:param log: Whether return the score in log representation.
:type log: bool
:return: Evaluation score, in the decimal or log.
:rtype: float
"""
lm
=
self
.
language_model_score
(
sentence
)
word_cnt
=
self
.
word_count
(
sentence
)
if
log
==
False
:
score
=
np
.
power
(
lm
,
self
.
_alpha
)
\
*
np
.
power
(
word_cnt
,
self
.
_beta
)
else
:
score
=
self
.
_alpha
*
np
.
log
(
lm
)
\
+
self
.
_beta
*
np
.
log
(
word_cnt
)
return
score
def
ctc_beam_search_decoder
(
probs_seq
,
beam_size
,
vocabulary
,
...
...
deep_speech_2/evaluate.py
浏览文件 @
46df7c44
...
...
@@ -10,6 +10,7 @@ import gzip
from
data_utils.data
import
DataGenerator
from
model
import
deep_speech2
from
decoder
import
*
from
scorer
import
Scorer
from
error_rate
import
wer
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
...
...
@@ -51,7 +52,7 @@ parser.add_argument(
"beam_search or beam_search_nproc. (default: %(default)s)"
)
parser
.
add_argument
(
"--language_model_path"
,
default
=
"data/
1Billion
.klm"
,
default
=
"data/
en.00.UNKNOWN
.klm"
,
type
=
str
,
help
=
"Path for language model. (default: %(default)s)"
)
parser
.
add_argument
(
...
...
deep_speech_2/infer.py
浏览文件 @
46df7c44
...
...
@@ -11,6 +11,7 @@ import paddle.v2 as paddle
from
data_utils.data
import
DataGenerator
from
model
import
deep_speech2
from
decoder
import
*
from
scorer
import
Scorer
from
error_rate
import
wer
import
utils
...
...
@@ -67,7 +68,7 @@ parser.add_argument(
help
=
"Vocabulary filepath. (default: %(default)s)"
)
parser
.
add_argument
(
"--decode_method"
,
default
=
'be
st_path
'
,
default
=
'be
am_search_nproc
'
,
type
=
str
,
help
=
"Method for ctc decoding:"
" best_path,"
...
...
@@ -85,7 +86,7 @@ parser.add_argument(
help
=
"Number of output per sample in beam search. (default: %(default)d)"
)
parser
.
add_argument
(
"--language_model_path"
,
default
=
"data/
1Billion
.klm"
,
default
=
"data/
en.00.UNKNOWN
.klm"
,
type
=
str
,
help
=
"Path for language model. (default: %(default)s)"
)
parser
.
add_argument
(
...
...
deep_speech_2/scorer.py
0 → 100644
浏览文件 @
46df7c44
"""External Scorer for Beam Search Decoder."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
kenlm
import
numpy
as
np
class
Scorer
(
object
):
"""External defined scorer to evaluate a sentence in beam search
decoding, consisting of language model and word count.
:param alpha: Parameter associated with language model.
:type alpha: float
:param beta: Parameter associated with word count.
:type beta: float
:model_path: Path to load language model.
:type model_path: basestring
"""
def
__init__
(
self
,
alpha
,
beta
,
model_path
):
self
.
_alpha
=
alpha
self
.
_beta
=
beta
if
not
os
.
path
.
isfile
(
model_path
):
raise
IOError
(
"Invaid language model path: %s"
%
model_path
)
self
.
_language_model
=
kenlm
.
LanguageModel
(
model_path
)
# n-gram language model scoring
def
language_model_score
(
self
,
sentence
):
#log10 prob of last word
log_cond_prob
=
list
(
self
.
_language_model
.
full_scores
(
sentence
,
eos
=
False
))[
-
1
][
0
]
return
np
.
power
(
10
,
log_cond_prob
)
# word insertion term
def
word_count
(
self
,
sentence
):
words
=
sentence
.
strip
().
split
(
' '
)
return
len
(
words
)
# execute evaluation
def
__call__
(
self
,
sentence
,
log
=
False
):
"""Evaluation function, gathering all the different scores
and return the final one.
:param sentence: The input sentence for evalutation
:type sentence: basestring
:param log: Whether return the score in log representation.
:type log: bool
:return: Evaluation score, in the decimal or log.
:rtype: float
"""
lm
=
self
.
language_model_score
(
sentence
)
word_cnt
=
self
.
word_count
(
sentence
)
if
log
==
False
:
score
=
np
.
power
(
lm
,
self
.
_alpha
)
\
*
np
.
power
(
word_cnt
,
self
.
_beta
)
else
:
score
=
self
.
_alpha
*
np
.
log
(
lm
)
\
+
self
.
_beta
*
np
.
log
(
word_cnt
)
return
score
deep_speech_2/tests/test_decoders.py
0 → 100644
浏览文件 @
46df7c44
"""Test decoders."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
unittest
from
decoder
import
*
class
TestDecoders
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
vocab_list
=
[
"
\'
"
,
' '
,
'a'
,
'b'
,
'c'
,
'd'
]
self
.
beam_size
=
20
self
.
probs_seq1
=
[[
0.06390443
,
0.21124858
,
0.27323887
,
0.06870235
,
0.0361254
,
0.18184413
,
0.16493624
],
[
0.03309247
,
0.22866108
,
0.24390638
,
0.09699597
,
0.31895462
,
0.0094893
,
0.06890021
],
[
0.218104
,
0.19992557
,
0.18245131
,
0.08503348
,
0.14903535
,
0.08424043
,
0.08120984
],
[
0.12094152
,
0.19162472
,
0.01473646
,
0.28045061
,
0.24246305
,
0.05206269
,
0.09772094
],
[
0.1333387
,
0.00550838
,
0.00301669
,
0.21745861
,
0.20803985
,
0.41317442
,
0.01946335
],
[
0.16468227
,
0.1980699
,
0.1906545
,
0.18963251
,
0.19860937
,
0.04377724
,
0.01457421
]]
self
.
probs_seq2
=
[[
0.08034842
,
0.22671944
,
0.05799633
,
0.36814645
,
0.11307441
,
0.04468023
,
0.10903471
],
[
0.09742457
,
0.12959763
,
0.09435383
,
0.21889204
,
0.15113123
,
0.10219457
,
0.20640612
],
[
0.45033529
,
0.09091417
,
0.15333208
,
0.07939558
,
0.08649316
,
0.12298585
,
0.01654384
],
[
0.02512238
,
0.22079203
,
0.19664364
,
0.11906379
,
0.07816055
,
0.22538587
,
0.13483174
],
[
0.17928453
,
0.06065261
,
0.41153005
,
0.1172041
,
0.11880313
,
0.07113197
,
0.04139363
],
[
0.15882358
,
0.1235788
,
0.23376776
,
0.20510435
,
0.00279306
,
0.05294827
,
0.22298418
]]
self
.
best_path_result
=
[
"ac'bdc"
,
"b'da"
]
self
.
beam_search_result
=
[
'acdc'
,
"b'a"
]
def
test_best_path_decoder_1
(
self
):
bst_result
=
ctc_best_path_decode
(
self
.
probs_seq1
,
self
.
vocab_list
)
self
.
assertEqual
(
bst_result
,
self
.
best_path_result
[
0
])
def
test_best_path_decoder_2
(
self
):
bst_result
=
ctc_best_path_decode
(
self
.
probs_seq2
,
self
.
vocab_list
)
self
.
assertEqual
(
bst_result
,
self
.
best_path_result
[
1
])
def
test_beam_search_decoder_1
(
self
):
beam_result
=
ctc_beam_search_decoder
(
probs_seq
=
self
.
probs_seq1
,
beam_size
=
self
.
beam_size
,
vocabulary
=
self
.
vocab_list
,
blank_id
=
len
(
self
.
vocab_list
))
self
.
assertEqual
(
beam_result
[
0
][
1
],
self
.
beam_search_result
[
0
])
def
test_beam_search_decoder_2
(
self
):
beam_result
=
ctc_beam_search_decoder
(
probs_seq
=
self
.
probs_seq2
,
beam_size
=
self
.
beam_size
,
vocabulary
=
self
.
vocab_list
,
blank_id
=
len
(
self
.
vocab_list
))
self
.
assertEqual
(
beam_result
[
0
][
1
],
self
.
beam_search_result
[
1
])
def
test_beam_search_nproc_decoder
(
self
):
beam_results
=
ctc_beam_search_decoder_nproc
(
probs_split
=
[
self
.
probs_seq1
,
self
.
probs_seq2
],
beam_size
=
self
.
beam_size
,
vocabulary
=
self
.
vocab_list
,
blank_id
=
len
(
self
.
vocab_list
))
self
.
assertEqual
(
beam_results
[
0
][
0
][
1
],
self
.
beam_search_result
[
0
])
self
.
assertEqual
(
beam_results
[
1
][
0
][
1
],
self
.
beam_search_result
[
1
])
if
__name__
==
'__main__'
:
unittest
.
main
()
deep_speech_2/tune.py
浏览文件 @
46df7c44
...
...
@@ -10,6 +10,7 @@ import gzip
from
data_utils.data
import
DataGenerator
from
model
import
deep_speech2
from
decoder
import
*
from
scorer
import
Scorer
from
error_rate
import
wer
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
...
...
@@ -81,7 +82,7 @@ parser.add_argument(
help
=
"Number of outputs per sample in beam search. (default: %(default)d)"
)
parser
.
add_argument
(
"--language_model_path"
,
default
=
"data/
1Billion
.klm"
,
default
=
"data/
en.00.UNKNOWN
.klm"
,
type
=
str
,
help
=
"Path for language model. (default: %(default)s)"
)
parser
.
add_argument
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录