未验证 提交 46b18b10 编写于 作者: T tensor-tang 提交者: GitHub

Ngraph (#1916)

* Added README for the ngraph engine

* Fix --model_save_dir

* Uncomment naive tests

* Update run.sh script

* update to use ngraph

* update readme

* Numactl -l was removed

* update instruction

* download pretrained model for inference only

* fix typo

* update
上级 f49ec1d7
# PaddlePaddle inference and training script
This directory contains configuration and instructions to run the PaddlePaddle + nGraph for a local training and inference.
# How to build PaddlePaddle framework with NGraph engine
In order to build the PaddlePaddle + nGraph engine and run proper script, follow up a few steps:
1. Install PaddlePaddle project
2. set env exports for nGraph and OpenMP
3. run the inference/training script
Currently supported models:
* ResNet50 (inference and training).
Only support Adam optimizer yet.
Short description of aforementioned steps:
## 1. Install PaddlePaddle
Follow PaddlePaddle [installation instruction](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/image_classification#installation) to install PaddlePaddle. If you build PaddlePaddle yourself, please use the following cmake arguments and ensure to set `-DWITH_NGRAPH=ON`.
```
cmake .. -DCMAKE_BUILD_TYPE=Release -DWITH_GPU=OFF -DWITH_MKL=ON -DWITH_MKLDNN=ON -DWITH_NGRAPH=ON
```
Note: MKLDNN and MKL are required.
## 2. Set env exports for nGraph and OMP
Set the following exports needed for running nGraph:
```
export FLAGS_use_ngraph=true
export OMP_NUM_THREADS=<num_cpu_cores>
```
Optional exports for better performance:
```
export KMP_AFFINITY=granularity=fine,compact,1,0
export KMP_BLOCKTIME=1
```
## 3. How the benchmark script might be run.
If everything built successfully, you can run command in ResNet50 nGraph session in script [run.sh](https://github.com/PaddlePaddle/models/blob/develop/fluid/PaddleCV/image_classification/run.sh) to start the benchmark job locally. You will need to uncomment the `#ResNet50 nGraph` part of script.
Above is training job using the nGraph, to run the inference job using the nGraph:
Please download the pre-trained resnet50 model from [supported models](https://github.com/PaddlePaddle/models/tree/72dcc7c1a8d5de9d19fbd65b4143bd0d661eee2c/fluid/PaddleCV/image_classification#supported-models-and-performances) for inference script.
......@@ -192,3 +192,26 @@ python train.py \
# --model_category=models_name \
# --model_save_dir=output/ \
# --l2_decay=3e-4
#ResNet50 nGraph:
# Training:
#OMP_NUM_THREADS=`nproc` FLAGS_use_ngraph=true python train.py \
# --model=ResNet50 \
# --batch_size=128 \
# --total_images=1281167 \
# --class_dim=1000 \
# --image_shape=3,224,224 \
# --lr_strategy=none \
# --lr=0.001 \
# --num_epochs=120 \
# --with_mem_opt=False \
# --model_category=models_name \
# --model_save_dir=output/ \
# --lr_strategy=adam \
# --use_gpu=False
# Inference:
#OMP_NUM_THREADS=`nproc` FLAGS_use_ngraph=true python infer.py \
# --use_gpu=false \
# --model=ResNet50 \
# --pretrained_model=ResNet50_pretrained
......@@ -116,6 +116,9 @@ def optimizer_setting(params):
learning_rate=lr,
momentum=momentum_rate,
regularization=fluid.regularizer.L2Decay(l2_decay))
elif ls["name"] == "adam":
lr = params["lr"]
optimizer = fluid.optimizer.Adam(learning_rate=lr)
else:
lr = params["lr"]
l2_decay = params["l2_decay"]
......@@ -264,14 +267,17 @@ def train(args):
fluid.io.load_vars(
exe, pretrained_model, main_program=train_prog, predicate=if_exist)
visible_device = os.getenv('CUDA_VISIBLE_DEVICES')
if visible_device:
device_num = len(visible_device.split(','))
if args.use_gpu:
visible_device = os.getenv('CUDA_VISIBLE_DEVICES')
if visible_device:
device_num = len(visible_device.split(','))
else:
device_num = subprocess.check_output(
['nvidia-smi', '-L']).decode().count('\n')
else:
device_num = subprocess.check_output(
['nvidia-smi', '-L']).decode().count('\n')
device_num = 1
train_batch_size = args.batch_size / device_num
test_batch_size = 16
if not args.enable_ce:
train_reader = paddle.batch(
......@@ -292,10 +298,15 @@ def train(args):
train_py_reader.decorate_paddle_reader(train_reader)
test_py_reader.decorate_paddle_reader(test_reader)
train_exe = fluid.ParallelExecutor(
main_program=train_prog,
use_cuda=bool(args.use_gpu),
loss_name=train_cost.name)
use_ngraph = os.getenv('FLAGS_use_ngraph')
if not use_ngraph:
train_exe = fluid.ParallelExecutor(
main_program=train_prog,
use_cuda=bool(args.use_gpu),
loss_name=train_cost.name)
else:
train_exe = exe
train_fetch_list = [
train_cost.name, train_acc1.name, train_acc5.name, global_lr.name
......@@ -314,9 +325,13 @@ def train(args):
try:
while True:
t1 = time.time()
loss, acc1, acc5, lr = train_exe.run(
fetch_list=train_fetch_list)
if use_ngraph:
loss, acc1, acc5, lr = train_exe.run(
train_prog, fetch_list=train_fetch_list)
else:
loss, acc1, acc5, lr = train_exe.run(
fetch_list=train_fetch_list)
t2 = time.time()
period = t2 - t1
loss = np.mean(np.array(loss))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册