Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
467abfd5
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
467abfd5
编写于
3月 20, 2019
作者:
J
jerrywgz
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine FPN code
上级
cf73d269
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
191 addition
and
50 deletion
+191
-50
fluid/PaddleCV/rcnn/config.py
fluid/PaddleCV/rcnn/config.py
+3
-3
fluid/PaddleCV/rcnn/models/FPN.py
fluid/PaddleCV/rcnn/models/FPN.py
+26
-3
fluid/PaddleCV/rcnn/models/model_builder.py
fluid/PaddleCV/rcnn/models/model_builder.py
+161
-44
fluid/PaddleCV/rcnn/reader.py
fluid/PaddleCV/rcnn/reader.py
+1
-0
未找到文件。
fluid/PaddleCV/rcnn/config.py
浏览文件 @
467abfd5
...
...
@@ -55,7 +55,7 @@ _C.TRAIN.padding_minibatch = False
_C
.
TRAIN
.
snapshot_iter
=
10000
# number of RPN proposals to keep before NMS
_C
.
TRAIN
.
rpn_pre_nms_top_n
=
1
2000
_C
.
TRAIN
.
rpn_pre_nms_top_n
=
2000
# number of RPN proposals to keep after NMS
_C
.
TRAIN
.
rpn_post_nms_top_n
=
2000
...
...
@@ -208,8 +208,8 @@ _C.FPN_rpn_aspect_ratios = (0.5, 1, 2)
_C
.
FPN_rpn_anchor_start_size
=
32
# Parameters to map RoI level
_C
.
FPN_roi_canonical_level
=
22
4
_C
.
FPN_roi_canonical_scale
=
4
_C
.
FPN_roi_canonical_level
=
4
_C
.
FPN_roi_canonical_scale
=
22
4
# Stride of the coarsest FPN level
_C
.
FPN_coarsest_stride
=
32
...
...
fluid/PaddleCV/rcnn/models/FPN.py
浏览文件 @
467abfd5
...
...
@@ -57,6 +57,7 @@ def add_fpn_onto_conv_body(res_dict, res_name_list):
fpn_dim
,
)
fpn_dict
=
{}
fpn_name_list
=
[]
for
i
in
range
(
num_backbone_stages
):
fpn_name
=
'fpn_'
+
res_name_list
[
i
]
fpn_output
=
fluid
.
layers
.
conv2d
(
...
...
@@ -88,7 +89,7 @@ def add_fpn_onto_conv_body(res_dict, res_name_list):
def
add_topdown_lateral_module
(
index
,
res_dict
,
res_name_list
,
fpn_inner_output
,
fpn_dim
):
lateral_name
=
'fpn_
lateral_'
+
res_name_list
[
index
]
lateral_name
=
'fpn_
inner_'
+
res_name_list
[
index
]
+
'_lateral'
topdown_name
=
'fpn_topdown_'
+
res_name_list
[
index
]
fpn_inner_name
=
'fpn_inner_'
+
res_name_list
[
index
]
lateral
=
fluid
.
layers
.
conv2d
(
...
...
@@ -130,6 +131,7 @@ def add_fpn_rpn_outputs(fpn_dict, im_info, fpn_name_list, mode):
rpn_rois_list
=
[]
rpn_roi_probs_list
=
[]
anchors_list
=
[]
anchor_num_list
=
[]
var_list
=
[]
for
lvl
in
range
(
k_min
,
k_max
+
1
):
input_name
=
fpn_name_list
[
k_max
-
lvl
]
...
...
@@ -152,6 +154,7 @@ def add_fpn_rpn_outputs(fpn_dict, im_info, fpn_name_list, mode):
name
=
conv_share_name
+
'_b'
,
learning_rate
=
2.
,
regularizer
=
L2Decay
(
0.
)))
conv_rpn_fpn
.
persistable
=
True
rpn_cls_logits_fpn
=
fluid
.
layers
.
conv2d
(
input
=
conv_rpn_fpn
,
num_filters
=
num_anchors
,
...
...
@@ -166,6 +169,15 @@ def add_fpn_rpn_outputs(fpn_dict, im_info, fpn_name_list, mode):
name
=
cls_share_name
+
'_b'
,
learning_rate
=
2.
,
regularizer
=
L2Decay
(
0.
)))
shape
=
fluid
.
layers
.
shape
(
rpn_cls_logits_fpn
)
shape_chw
=
fluid
.
layers
.
slice
(
shape
,
axes
=
[
0
],
starts
=
[
1
],
ends
=
[
4
])
anchors_num
=
fluid
.
layers
.
reduce_prod
(
shape_chw
)
if
lvl
==
k_min
:
anchor_num_list
.
append
(
anchors_num
)
else
:
anchor_num_list
.
append
(
anchor_num_list
[
-
1
]
+
anchors_num
)
anchor_num_list
[
-
1
].
stop_gradient
=
True
rpn_cls_logits_fpn
.
persistable
=
True
rpn_bbox_pred_fpn
=
fluid
.
layers
.
conv2d
(
input
=
conv_rpn_fpn
,
num_filters
=
num_anchors
*
4
,
...
...
@@ -180,6 +192,7 @@ def add_fpn_rpn_outputs(fpn_dict, im_info, fpn_name_list, mode):
name
=
bbox_share_name
+
'_b'
,
learning_rate
=
2.
,
regularizer
=
L2Decay
(
0.
)))
rpn_bbox_pred_fpn
.
persistable
=
True
rpn_fpn_list
.
append
((
rpn_cls_logits_fpn
,
rpn_bbox_pred_fpn
))
anchors
,
var
=
fluid
.
layers
.
anchor_generator
(
...
...
@@ -188,14 +201,18 @@ def add_fpn_rpn_outputs(fpn_dict, im_info, fpn_name_list, mode):
aspect_ratios
=
cfg
.
FPN_rpn_aspect_ratios
,
variance
=
cfg
.
variances
,
stride
=
(
2.
**
lvl
,
2.
**
lvl
))
rpn_cls_probs_fpn
=
fluid
.
layers
.
sigmoid
(
rpn_cls_logits_fpn
,
name
=
'rpn_cls_probs_fpn'
+
slvl
)
rpn_cls_probs_fpn
.
persistable
=
True
param_obj
=
cfg
.
TRAIN
if
mode
==
'train'
else
cfg
.
TEST
pre_nms_top_n
=
param_obj
.
rpn_pre_nms_top_n
post_nms_top_n
=
param_obj
.
rpn_post_nms_top_n
nms_thresh
=
param_obj
.
rpn_nms_thresh
min_size
=
param_obj
.
rpn_min_size
eta
=
param_obj
.
rpn_eta
rpn_rois_fpn
,
rpn_roi_probs_fpn
=
fluid
.
layers
.
generate_proposals
(
scores
=
rpn_cls_probs_fpn
,
bbox_deltas
=
rpn_bbox_pred_fpn
,
...
...
@@ -207,11 +224,13 @@ def add_fpn_rpn_outputs(fpn_dict, im_info, fpn_name_list, mode):
nms_thresh
=
nms_thresh
,
min_size
=
min_size
,
eta
=
eta
)
rpn_rois_fpn
.
persistable
=
True
rpn_roi_probs_fpn
.
persistable
=
True
rpn_rois_list
.
append
(
rpn_rois_fpn
)
rpn_roi_probs_list
.
append
(
rpn_roi_probs_fpn
)
anchors_list
.
append
(
anchors
)
var_list
.
append
(
var
)
return
rpn_fpn_list
,
rpn_rois_list
,
rpn_roi_probs_list
,
anchors_list
,
var_list
return
rpn_fpn_list
,
rpn_rois_list
,
rpn_roi_probs_list
,
anchors_list
,
var_list
,
anchor_num_list
def
add_FPN_roi_head
(
head_inputs
,
rois_list
,
fpn_name_list
,
spatial_scale
):
...
...
@@ -219,9 +238,10 @@ def add_FPN_roi_head(head_inputs, rois_list, fpn_name_list, spatial_scale):
k_min
=
cfg
.
FPN_roi_min_level
num_roi_lvls
=
k_max
-
k_min
+
1
input_name_list
=
fpn_name_list
[
-
num_roi_lvls
:]
spatial_scale
=
spatial_scale
[
-
num_roi_lvls
:]
roi_out_list
=
[]
for
lvl
in
range
(
k_min
,
k_max
+
1
):
rois
=
rois_list
[
k_max
-
lvl
]
rois
=
rois_list
[
lvl
-
k_min
]
input_name
=
input_name_list
[
k_max
-
lvl
]
head_input
=
head_inputs
[
input_name
]
sc
=
spatial_scale
[
k_max
-
lvl
]
...
...
@@ -243,6 +263,7 @@ def add_FPN_roi_head(head_inputs, rois_list, fpn_name_list, spatial_scale):
sampling_ratio
=
cfg
.
sampling_ratio
,
name
=
'roi_align_lvl_'
+
str
(
lvl
))
roi_out_list
.
append
(
roi_out
)
roi_out
.
persistable
=
True
return
roi_out_list
...
...
@@ -257,6 +278,7 @@ def add_FPN_roi_head_output(body_dict, pool_rois, body_name_list,
roi_feat_shuffle
=
fluid
.
layers
.
concat
(
roi_out_list
)
roi_feat
=
fluid
.
layers
.
gather
(
roi_feat_shuffle
,
restore_index
)
roi_feat
=
fluid
.
layers
.
lod_reset
(
roi_feat
,
rois_collect
)
roi_feat
.
persistable
=
True
fc6
=
fluid
.
layers
.
fc
(
input
=
roi_feat
,
size
=
cfg
.
MLP_HEAD_DIM
,
act
=
'relu'
,
...
...
@@ -275,4 +297,5 @@ def add_FPN_roi_head_output(body_dict, pool_rois, body_name_list,
name
=
'fc7_b'
,
learning_rate
=
2.
,
regularizer
=
L2Decay
(
0.
)))
fc7
.
persistable
=
True
return
roi_feat
,
fc7
fluid/PaddleCV/rcnn/models/model_builder.py
浏览文件 @
467abfd5
...
...
@@ -43,8 +43,8 @@ class RCNN(object):
if
cfg
.
FPN_ON
:
body_dict
,
self
.
spatial_scale
,
body_name_list
=
FPN
.
add_fpn_onto_conv_body
(
body_dict
,
body_name_list
)
# RPN
#print(body_dict)
self
.
rpn_heads
(
body_dict
,
body_name_list
)
# Fast RCNN
self
.
fast_rcnn_heads
(
body_dict
,
body_name_list
)
...
...
@@ -188,21 +188,18 @@ class RCNN(object):
self
.
rpn_roi_probs_list
=
fpn_outputs
[
2
]
self
.
anchors_list
=
fpn_outputs
[
3
]
self
.
var_list
=
fpn_outputs
[
4
]
self
.
anchor_num_list
=
fpn_outputs
[
5
]
param_obj
=
cfg
.
TRAIN
if
self
.
mode
==
'train'
else
cfg
.
TEST
post_nms_top_n
=
param_obj
.
rpn_post_nms_top_n
rois_collect
=
fluid
.
layers
.
collect_fpn_proposals
(
self
.
rpn_rois_list
,
self
.
rpn_roi_probs_list
,
cfg
.
FPN_rpn_max_level
,
cfg
.
FPN_rpn_min_level
,
cfg
.
FPN_rpn_max_level
,
post_nms_top_n
,
name
=
'collect'
)
rois_collect
.
persistable
=
True
fluid
.
layers
.
Print
(
rois_collect
)
if
self
.
mode
==
'train'
:
rois_collect
=
self
.
generate_labels
(
rois_collect
)
#rois_collect.persistable = True
#fluid.layers.Print(rois_collect)
rois
,
self
.
restore_index
=
fluid
.
layers
.
distribute_fpn_proposals
(
rois_collect
,
cfg
.
FPN_roi_min_level
,
...
...
@@ -210,6 +207,10 @@ class RCNN(object):
cfg
.
FPN_roi_canonical_level
,
cfg
.
FPN_roi_canonical_scale
,
name
=
'distribute'
)
for
roi
in
rois
:
roi
.
persistable
=
True
self
.
restore_index
.
persistable
=
True
return
rois_collect
,
rois
,
self
.
restore_index
def
single_scale_rpn_heads
(
self
,
res_dict
,
res_name_list
):
...
...
@@ -295,8 +296,6 @@ class RCNN(object):
return
rois
def
generate_labels
(
self
,
input_rois
):
#input_rois.persistable=True
#fluid.layers.Print(input_rois)
outs
=
fluid
.
layers
.
generate_proposal_labels
(
rpn_rois
=
input_rois
,
gt_classes
=
self
.
gt_label
,
...
...
@@ -317,7 +316,7 @@ class RCNN(object):
self
.
bbox_targets
=
outs
[
2
]
self
.
bbox_inside_weights
=
outs
[
3
]
self
.
bbox_outside_weights
=
outs
[
4
]
rois
.
persistable
=
True
if
cfg
.
MASK_ON
:
mask_out
=
fluid
.
layers
.
generate_mask_labels
(
im_info
=
self
.
im_info
,
...
...
@@ -352,6 +351,7 @@ class RCNN(object):
name
=
'cls_score_b'
,
learning_rate
=
2.
,
regularizer
=
L2Decay
(
0.
)))
self
.
cls_score
.
persistable
=
True
self
.
bbox_pred
=
fluid
.
layers
.
fc
(
input
=
rcnn_out
,
size
=
4
*
cfg
.
class_num
,
act
=
None
,
...
...
@@ -364,6 +364,7 @@ class RCNN(object):
name
=
'bbox_pred_b'
,
learning_rate
=
2.
,
regularizer
=
L2Decay
(
0.
)))
self
.
bbox_pred
.
persistable
=
True
def
SuffixNet
(
self
,
conv5
):
mask_out
=
fluid
.
layers
.
conv2d_transpose
(
...
...
@@ -456,20 +457,99 @@ class RCNN(object):
loss_bbox
=
fluid
.
layers
.
reduce_mean
(
loss_bbox
)
return
loss_cls
,
loss_bbox
def
single_scale_rpn_loss
(
self
):
def
transform_rpn_input
(
self
,
rpn_cls_score
,
rpn_bbox_pred
,
anchor
,
var
):
rpn_cls_score_reshape
=
fluid
.
layers
.
transpose
(
self
.
rpn_cls_score
,
perm
=
[
0
,
2
,
3
,
1
])
rpn_cls_score
,
perm
=
[
0
,
2
,
3
,
1
])
rpn_bbox_pred_reshape
=
fluid
.
layers
.
transpose
(
self
.
rpn_bbox_pred
,
perm
=
[
0
,
2
,
3
,
1
])
rpn_bbox_pred
,
perm
=
[
0
,
2
,
3
,
1
])
anchor_reshape
=
fluid
.
layers
.
reshape
(
self
.
anchor
,
shape
=
(
-
1
,
4
))
var_reshape
=
fluid
.
layers
.
reshape
(
self
.
var
,
shape
=
(
-
1
,
4
))
anchor_reshape
=
fluid
.
layers
.
reshape
(
anchor
,
shape
=
(
-
1
,
4
))
var_reshape
=
fluid
.
layers
.
reshape
(
var
,
shape
=
(
-
1
,
4
))
rpn_cls_score_reshape
=
fluid
.
layers
.
reshape
(
x
=
rpn_cls_score_reshape
,
shape
=
(
0
,
-
1
,
1
))
rpn_bbox_pred_reshape
=
fluid
.
layers
.
reshape
(
x
=
rpn_bbox_pred_reshape
,
shape
=
(
0
,
-
1
,
4
))
score_pred
,
loc_pred
,
score_tgt
,
loc_tgt
,
bbox_weight
=
\
return
rpn_cls_score_reshape
,
rpn_bbox_pred_reshape
,
anchor_reshape
,
var_reshape
def
fpn_rpn_input
(
self
):
rpn_cls_reshape_list
=
[]
rpn_bbox_reshape_list
=
[]
anchors_reshape_list
=
[]
var_reshape_list
=
[]
for
i
in
range
(
len
(
self
.
rpn_fpn_list
)):
single_rpn_input
=
self
.
transform_rpn_input
(
self
.
rpn_fpn_list
[
i
][
0
],
self
.
rpn_fpn_list
[
i
][
1
],
self
.
anchors_list
[
i
],
self
.
var_list
[
i
])
rpn_cls_reshape_list
.
append
(
single_rpn_input
[
0
])
rpn_bbox_reshape_list
.
append
(
single_rpn_input
[
1
])
anchors_reshape_list
.
append
(
single_rpn_input
[
2
])
var_reshape_list
.
append
(
single_rpn_input
[
3
])
rpn_cls_input
=
fluid
.
layers
.
concat
(
rpn_cls_reshape_list
,
axis
=
1
)
rpn_bbox_input
=
fluid
.
layers
.
concat
(
rpn_bbox_reshape_list
,
axis
=
1
)
anchors_input
=
fluid
.
layers
.
concat
(
anchors_reshape_list
)
var_input
=
fluid
.
layers
.
concat
(
var_reshape_list
)
return
rpn_cls_input
,
rpn_bbox_input
,
anchors_input
,
var_input
def
get_rpn_loss
(
self
,
score_pred
,
loc_pred
,
score_tgt
,
loc_tgt
,
bbox_weight
,
level_score_weight
=
None
,
level_bbox_weight
=
None
,
lvl
=
None
):
score_tgt
=
fluid
.
layers
.
cast
(
x
=
score_tgt
,
dtype
=
'float32'
)
score_tgt
.
stop_gradient
=
True
rpn_cls_loss
=
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
score_pred
,
label
=
score_tgt
)
if
level_score_weight
is
not
None
:
level_score_weight
=
fluid
.
layers
.
cast
(
x
=
level_score_weight
,
dtype
=
'float32'
)
level_score_weight
.
stop_gradient
=
True
rpn_cls_loss
=
rpn_cls_loss
*
level_score_weight
rpn_cls_loss
=
fluid
.
layers
.
reduce_sum
(
rpn_cls_loss
)
rpn_cls_loss
=
rpn_cls_loss
/
(
cfg
.
TRAIN
.
im_per_batch
*
cfg
.
TRAIN
.
rpn_batch_size_per_im
)
rpn_cls_loss
.
persistable
=
True
loc_tgt
=
fluid
.
layers
.
cast
(
x
=
loc_tgt
,
dtype
=
'float32'
)
loc_tgt
.
stop_gradient
=
True
rpn_bbox_loss
=
fluid
.
layers
.
smooth_l1
(
x
=
loc_pred
,
y
=
loc_tgt
,
sigma
=
3.0
,
inside_weight
=
bbox_weight
,
outside_weight
=
bbox_weight
)
if
level_bbox_weight
is
not
None
:
level_bbox_weight
=
fluid
.
layers
.
cast
(
x
=
level_bbox_weight
,
dtype
=
'float32'
)
level_bbox_weight
.
stop_gradient
=
True
rpn_bbox_loss
=
rpn_bbox_loss
*
level_bbox_weight
rpn_bbox_loss
=
fluid
.
layers
.
reduce_sum
(
rpn_bbox_loss
)
score_shape
=
fluid
.
layers
.
shape
(
score_tgt
)
score_shape
=
fluid
.
layers
.
cast
(
x
=
score_shape
,
dtype
=
'float32'
)
norm
=
fluid
.
layers
.
reduce_prod
(
score_shape
)
norm
.
stop_gradient
=
True
rpn_bbox_loss
=
rpn_bbox_loss
/
norm
return
rpn_cls_loss
,
rpn_bbox_loss
def
single_scale_rpn_loss
(
self
):
rpn_input
=
self
.
transform_rpn_input
(
self
.
rpn_cls_score
,
self
.
rpn_bbox_pred
,
self
.
anchor
,
self
.
var
)
rpn_cls_score_reshape
=
rpn_input
[
0
]
rpn_bbox_pred_reshape
=
rpn_input
[
1
]
anchor_reshape
=
rpn_input
[
2
]
var_reshape
=
rpn_input
[
3
]
score_index
,
loc_index
,
score_tgt
,
loc_tgt
,
bbox_weight
=
\
fluid
.
layers
.
rpn_target_assign
(
bbox_pred
=
rpn_bbox_pred_reshape
,
cls_logits
=
rpn_cls_score_reshape
,
...
...
@@ -484,30 +564,17 @@ class RCNN(object):
rpn_positive_overlap
=
cfg
.
TRAIN
.
rpn_positive_overlap
,
rpn_negative_overlap
=
cfg
.
TRAIN
.
rpn_negative_overlap
,
use_random
=
self
.
use_random
)
score_tgt
=
fluid
.
layers
.
cast
(
x
=
score_tgt
,
dtype
=
'float32'
)
rpn_cls_loss
=
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
score_pred
,
label
=
score_tgt
)
if
cfg
.
FPN_ON
:
rpn_cls_loss
=
fluid
.
layers
.
reduce_sum
(
rpn_cls_loss
)
rpn_cls_loss
=
rpn_cls_loss
/
(
cfg
.
TRAIN
.
im_per_batch
*
cfg
.
TRAIN
.
rpn_batch_size_per_im
)
else
:
rpn_cls_loss
=
fluid
.
layers
.
reduce_mean
(
rpn_cls_loss
,
name
=
'loss_rpn_cls'
)
rpn_reg_loss
=
fluid
.
layers
.
smooth_l1
(
x
=
loc_pred
,
y
=
loc_tgt
,
sigma
=
3.0
,
inside_weight
=
bbox_weight
,
outside_weight
=
bbox_weight
)
rpn_reg_loss
=
fluid
.
layers
.
reduce_sum
(
rpn_reg_loss
,
name
=
'loss_rpn_bbox'
)
score_shape
=
fluid
.
layers
.
shape
(
score_tgt
)
score_shape
=
fluid
.
layers
.
cast
(
x
=
score_shape
,
dtype
=
'float32'
)
norm
=
fluid
.
layers
.
reduce_prod
(
score_shape
)
norm
.
stop_gradient
=
True
rpn_reg_loss
=
rpn_reg_loss
/
norm
return
rpn_cls_loss
,
rpn_reg_loss
rpn_cls_score_reshape
=
fluid
.
layers
.
reshape
(
x
=
rpn_cls_score_reshape
,
shape
=
(
-
1
,
1
))
rpn_bbox_pred_reshape
=
fluid
.
layers
.
reshape
(
x
=
rpn_bbox_pred_reshape
,
shape
=
(
-
1
,
4
))
score_pred
=
fluid
.
layers
.
gather
(
rpn_cls_score_reshape
,
score_index
)
loc_pred
=
fluid
.
layers
.
gather
(
rpn_bbox_pred_reshape
,
loc_index
)
rpn_cls_loss
,
rpn_bbox_loss
=
self
.
get_rpn_loss
(
score_pred
,
loc_pred
,
score_tgt
,
loc_tgt
,
bbox_weight
)
return
rpn_cls_loss
,
rpn_bbox_loss
def
fpn_rpn_loss
(
self
):
k_max
=
cfg
.
FPN_rpn_max_level
...
...
@@ -516,13 +583,63 @@ class RCNN(object):
loss_rpn_bbox_fpn_name
=
[]
loss_rpn_cls_fpn_list
=
[]
loss_rpn_bbox_fpn_list
=
[]
rpn_input
=
self
.
fpn_rpn_input
()
rpn_cls_score_reshape
=
rpn_input
[
0
]
rpn_bbox_pred_reshape
=
rpn_input
[
1
]
anchor_reshape
=
rpn_input
[
2
]
var_reshape
=
rpn_input
[
3
]
score_index
,
loc_index
,
score_tgt
,
loc_tgt
,
bbox_weight
=
\
fluid
.
layers
.
rpn_target_assign
(
bbox_pred
=
rpn_bbox_pred_reshape
,
cls_logits
=
rpn_cls_score_reshape
,
anchor_box
=
anchor_reshape
,
anchor_var
=
var_reshape
,
gt_boxes
=
self
.
gt_box
,
is_crowd
=
self
.
is_crowd
,
im_info
=
self
.
im_info
,
rpn_batch_size_per_im
=
cfg
.
TRAIN
.
rpn_batch_size_per_im
,
rpn_straddle_thresh
=
cfg
.
TRAIN
.
rpn_straddle_thresh
,
rpn_fg_fraction
=
cfg
.
TRAIN
.
rpn_fg_fraction
,
rpn_positive_overlap
=
cfg
.
TRAIN
.
rpn_positive_overlap
,
rpn_negative_overlap
=
cfg
.
TRAIN
.
rpn_negative_overlap
,
use_random
=
self
.
use_random
)
rpn_cls_score_reshape
=
fluid
.
layers
.
reshape
(
x
=
rpn_cls_score_reshape
,
shape
=
(
-
1
,
1
))
rpn_bbox_pred_reshape
=
fluid
.
layers
.
reshape
(
x
=
rpn_bbox_pred_reshape
,
shape
=
(
-
1
,
4
))
score_pred
=
fluid
.
layers
.
gather
(
rpn_cls_score_reshape
,
score_index
)
loc_pred
=
fluid
.
layers
.
gather
(
rpn_bbox_pred_reshape
,
loc_index
)
for
lvl
in
range
(
k_min
,
k_max
+
1
):
slvl
=
str
(
lvl
)
self
.
rpn_cls_score
=
self
.
rpn_fpn_list
[
lvl
-
k_min
][
0
]
self
.
rpn_bbox_pred
=
self
.
rpn_fpn_list
[
lvl
-
k_min
][
1
]
self
.
anchor
=
self
.
anchors_list
[
lvl
-
k_min
]
self
.
var
=
self
.
var_list
[
lvl
-
k_min
]
loss_rpn_cls_fpn
,
loss_rpn_bbox_fpn
=
self
.
single_scale_rpn_loss
()
if
lvl
==
k_min
:
anchor_num
=
self
.
anchor_num_list
[
lvl
-
k_min
]
level_score_weight
=
fluid
.
layers
.
less_than
(
x
=
score_index
,
y
=
anchor_num
)
level_loc_weight
=
fluid
.
layers
.
less_than
(
x
=
loc_index
,
y
=
anchor_num
)
else
:
anchor_num
=
self
.
anchor_num_list
[
lvl
-
k_min
]
pre_anchor_num
=
self
.
anchor_num_list
[
lvl
-
k_min
-
1
]
level_score_weight_0
=
fluid
.
layers
.
less_than
(
x
=
score_index
,
y
=
pre_anchor_num
)
level_score_weight_1
=
fluid
.
layers
.
less_than
(
x
=
score_index
,
y
=
anchor_num
)
level_score_weight
=
fluid
.
layers
.
logical_xor
(
level_score_weight_0
,
level_score_weight_1
)
level_loc_weight_0
=
fluid
.
layers
.
less_than
(
x
=
loc_index
,
y
=
pre_anchor_num
)
level_loc_weight_1
=
fluid
.
layers
.
less_than
(
x
=
loc_index
,
y
=
anchor_num
)
level_loc_weight
=
fluid
.
layers
.
logical_xor
(
level_loc_weight_0
,
level_loc_weight_1
)
loss_rpn_cls_fpn
,
loss_rpn_bbox_fpn
=
self
.
get_rpn_loss
(
score_pred
,
loc_pred
,
score_tgt
,
loc_tgt
,
bbox_weight
,
level_score_weight
,
level_loc_weight
,
lvl
)
loss_rpn_cls_fpn
.
persistable
=
True
loss_rpn_bbox_fpn
.
persistable
=
True
loss_rpn_cls_fpn_name
.
append
(
'loss_rpn_cls_fpn'
+
slvl
)
loss_rpn_bbox_fpn_name
.
append
(
'loss_rpn_bbox_fpn'
+
slvl
)
loss_rpn_cls_fpn_list
.
append
(
loss_rpn_cls_fpn
)
...
...
fluid/PaddleCV/rcnn/reader.py
浏览文件 @
467abfd5
...
...
@@ -111,6 +111,7 @@ def coco(mode,
roidb
=
roidb_perm
[
0
]
roidb_cur
+=
1
roidb_perm
.
rotate
(
-
1
)
if
'0000139'
not
in
roidb
[
'image'
]:
continue
if
roidb_cur
>=
len
(
roidbs
):
if
shuffle
:
roidb_perm
=
deque
(
np
.
random
.
permutation
(
roidbs
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录