Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
43f86d5c
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
43f86d5c
编写于
1月 10, 2019
作者:
T
typhoonzero
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update
上级
42e303c6
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
20 addition
and
36 deletion
+20
-36
fluid/PaddleCV/image_classification/train.py
fluid/PaddleCV/image_classification/train.py
+20
-36
未找到文件。
fluid/PaddleCV/image_classification/train.py
浏览文件 @
43f86d5c
...
...
@@ -41,8 +41,7 @@ add_arg('enable_ce', bool, False, "If set True, enable co
add_arg
(
'data_dir'
,
str
,
"./data/ILSVRC2012"
,
"The ImageNet dataset root dir."
)
add_arg
(
'model_category'
,
str
,
"models"
,
"Whether to use models_name or not, valid value:'models','models_name'"
)
add_arg
(
'fp16'
,
bool
,
False
,
"Enable half precision training with fp16."
)
add_arg
(
'kaiming_init'
,
bool
,
True
,
"Use kaiming init algo for conv layers."
)
add_arg
(
'scale_loss'
,
int
,
1
,
"Scale loss for fp16."
)
add_arg
(
'scale_loss'
,
float
,
1.0
,
"Scale loss for fp16."
)
# yapf: enable
...
...
@@ -148,15 +147,15 @@ def net_config(image, label, model, args):
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
out0
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
out0
,
label
=
label
,
k
=
5
)
else
:
out
=
model
.
net
(
input
=
image
,
class_dim
=
class_dim
)
out
=
model
.
net
(
input
=
image
,
class_dim
=
class_dim
)
cost
,
pred
=
fluid
.
layers
.
softmax_with_cross_entropy
(
out
,
label
,
return_softmax
=
True
)
if
args
.
scale_loss
>
1
:
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
out
,
label
=
label
)
*
float
(
args
.
scale_loss
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
*
float
(
args
.
scale_loss
)
else
:
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
pred
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
pred
,
label
=
label
,
k
=
5
)
return
avg_cost
,
acc_top1
,
acc_top5
...
...
@@ -224,21 +223,18 @@ def build_program(is_train, main_prog, startup_prog, args):
assert
model_name
in
model_list
,
"{} is not in lists: {}"
.
format
(
args
.
model
,
model_list
)
model
=
models
.
__dict__
[
model_name
]()
if
args
.
fp16
:
reader_dtype
=
"float16"
else
:
reader_dtype
=
"float32"
params_grads
=
[]
with
fluid
.
program_guard
(
main_prog
,
startup_prog
):
py_reader
=
fluid
.
layers
.
py_reader
(
capacity
=
16
,
shapes
=
[[
-
1
]
+
image_shape
,
[
-
1
,
1
]],
lod_levels
=
[
0
,
0
],
dtypes
=
[
reader_dtype
,
"int64"
],
dtypes
=
[
"float32"
,
"int64"
],
use_double_buffer
=
True
)
with
fluid
.
unique_name
.
guard
():
image
,
label
=
fluid
.
layers
.
read_file
(
py_reader
)
if
args
.
fp16
:
image
=
fluid
.
layers
.
cast
(
image
,
reader_dtype
)
image
=
fluid
.
layers
.
cast
(
image
,
"float16"
)
avg_cost
,
acc_top1
,
acc_top5
=
net_config
(
image
,
label
,
model
,
args
)
avg_cost
.
persistable
=
True
acc_top1
.
persistable
=
True
...
...
@@ -252,7 +248,7 @@ def build_program(is_train, main_prog, startup_prog, args):
params
[
"learning_strategy"
][
"name"
]
=
args
.
lr_strategy
optimizer
=
optimizer_setting
(
params
)
params_grads
=
optimizer
.
_
backward
(
avg_cost
)
params_grads
=
optimizer
.
backward
(
avg_cost
)
if
args
.
fp16
:
master_params_grads
=
[]
...
...
@@ -265,14 +261,20 @@ def build_program(is_train, main_prog, startup_prog, args):
startup_p
=
startup_prog
.
global_block
().
var
(
p
.
name
)
cast_fp16_to_fp32
(
startup_p
,
startup_master_param
,
startup_prog
)
if
g
.
name
.
startswith
(
"batch_norm"
):
if
args
.
scale_loss
>
1
:
scaled_g
=
g
/
float
(
args
.
scale_loss
)
else
:
scaled_g
=
g
master_params_grads
.
append
([
p
,
scaled_g
])
continue
master_grad
=
fluid
.
layers
.
cast
(
g
,
"float32"
)
if
args
.
scale_loss
>
1
:
master_grad
=
master_grad
/
float
(
args
.
scale_loss
)
master_params_grads
.
append
([
master_param
,
master_grad
])
main_prog
.
_current_role
=
tmp_role
update_op_role_var
(
params_grads
,
master_params_grads
,
main_prog
)
optimizer
.
minimize
(
avg_cost
,
user_params_grads
=
master_params_grads
)
optimizer
.
apply_gradients
(
master_params_grads
)
for
idx
,
m_p_g
in
enumerate
(
master_params_grads
):
train_p
,
train_g
=
params_grads
[
idx
]
...
...
@@ -317,27 +319,10 @@ def train(args):
fluid
.
memory_optimize
(
train_prog
)
fluid
.
memory_optimize
(
test_prog
)
with
open
(
"train_prog"
,
"w"
)
as
fn
:
fn
.
write
(
str
(
train_prog
))
with
open
(
"startup_prog"
,
"w"
)
as
fn
:
fn
.
write
(
str
(
startup_prog
))
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
args
.
fp16
and
args
.
kaiming_init
:
import
torch
conv2d_w_vars
=
[
var
for
var
in
startup_prog
.
global_block
().
vars
.
values
()
if
var
.
name
.
startswith
(
'conv2d_'
)]
for
var
in
conv2d_w_vars
:
torch_w
=
torch
.
empty
(
var
.
shape
)
kaiming_np
=
torch
.
nn
.
init
.
kaiming_normal_
(
torch_w
,
mode
=
'fan_out'
,
nonlinearity
=
'relu'
).
numpy
()
tensor
=
fluid
.
global_scope
().
find_var
(
var
.
name
).
get_tensor
()
if
var
.
name
.
find
(
".master"
)
==
-
1
:
tensor
.
set
(
np
.
array
(
kaiming_np
,
dtype
=
'float16'
).
view
(
np
.
uint16
),
place
)
else
:
tensor
.
set
(
np
.
array
(
kaiming_np
,
dtype
=
'float32'
),
place
)
if
checkpoint
is
not
None
:
fluid
.
io
.
load_persistables
(
exe
,
checkpoint
,
main_program
=
train_prog
)
...
...
@@ -353,8 +338,7 @@ def train(args):
if
visible_device
:
device_num
=
len
(
visible_device
.
split
(
','
))
else
:
device_num
=
8
# device_num = subprocess.check_output(['nvidia-smi', '-L']).decode().count('\n')
device_num
=
subprocess
.
check_output
([
'nvidia-smi'
,
'-L'
]).
decode
().
count
(
'
\n
'
)
train_batch_size
=
args
.
batch_size
/
device_num
test_batch_size
=
8
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录