Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
3e9fccea
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
3e9fccea
编写于
6月 08, 2018
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Make outputs between fast_infer and the original python infer alignment in Transformer
上级
82ba5c03
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
43 addition
and
24 deletion
+43
-24
fluid/neural_machine_translation/transformer/config.py
fluid/neural_machine_translation/transformer/config.py
+3
-3
fluid/neural_machine_translation/transformer/infer.py
fluid/neural_machine_translation/transformer/infer.py
+17
-5
fluid/neural_machine_translation/transformer/model.py
fluid/neural_machine_translation/transformer/model.py
+21
-16
fluid/neural_machine_translation/transformer/train.py
fluid/neural_machine_translation/transformer/train.py
+2
-0
未找到文件。
fluid/neural_machine_translation/transformer/config.py
浏览文件 @
3e9fccea
...
...
@@ -42,9 +42,9 @@ class InferTaskConfig(object):
# the number of decoded sentences to output.
n_best
=
1
# the flags indicating whether to output the special tokens.
output_bos
=
False
output_eos
=
False
output_unk
=
False
output_bos
=
True
#
False
output_eos
=
True
#
False
output_unk
=
True
#
False
# the directory for loading the trained model.
model_path
=
"trained_models/pass_1.infer.model"
...
...
fluid/neural_machine_translation/transformer/infer.py
浏览文件 @
3e9fccea
...
...
@@ -275,11 +275,11 @@ def translate_batch(exe,
top_k_indice
=
np
.
argpartition
(
predict
,
-
beam_size
)[
-
beam_size
:]
top_scores_ids
=
top_k_indice
[
np
.
argsort
(
predict
[
top_k_indice
])[::
-
1
]]
top_scores_ids
=
np
.
asarray
(
sorted
(
top_scores_ids
,
lambda
x
,
y
:
x
/
predict_all
.
shape
[
-
1
]
-
y
/
predict_all
.
shape
[
-
1
]
))
# sort by pre_branch and score to compare with fast_infer
#
top_scores_ids = np.asarray(
#
sorted(
#
top_scores_ids,
#
lambda x, y: x / predict_all.shape[-1] - y / predict_all.shape[-1]
#
)) # sort by pre_branch and score to compare with fast_infer
top_scores
=
predict
[
top_scores_ids
]
scores
[
beam_idx
]
=
top_scores
prev_branchs
[
beam_idx
].
append
(
top_scores_ids
/
...
...
@@ -368,6 +368,7 @@ def infer(args):
start_mark
=
args
.
special_token
[
0
],
end_mark
=
args
.
special_token
[
1
],
unk_mark
=
args
.
special_token
[
2
],
max_length
=
ModelHyperParams
.
max_length
,
clip_last_batch
=
False
)
trg_idx2word
=
test_data
.
load_dict
(
...
...
@@ -394,6 +395,8 @@ def infer(args):
seq
)
for
batch_id
,
data
in
enumerate
(
test_data
.
batch_generator
()):
if
batch_id
!=
0
:
continue
batch_seqs
,
batch_scores
=
translate_batch
(
exe
,
[
item
[
0
]
for
item
in
data
],
...
...
@@ -422,6 +425,8 @@ def infer(args):
scores
=
batch_scores
[
i
]
for
seq
in
seqs
:
print
(
" "
.
join
([
trg_idx2word
[
idx
]
for
idx
in
seq
]))
print
scores
exit
(
0
)
def
prepare_batch_input
(
insts
,
data_input_names
,
util_input_names
,
src_pad_idx
,
...
...
@@ -522,12 +527,15 @@ def fast_infer(args):
start_mark
=
args
.
special_token
[
0
],
end_mark
=
args
.
special_token
[
1
],
unk_mark
=
args
.
special_token
[
2
],
max_length
=
ModelHyperParams
.
max_length
,
clip_last_batch
=
False
)
trg_idx2word
=
test_data
.
load_dict
(
dict_path
=
args
.
trg_vocab_fpath
,
reverse
=
True
)
for
batch_id
,
data
in
enumerate
(
test_data
.
batch_generator
()):
if
batch_id
!=
0
:
continue
data_input
=
prepare_batch_input
(
data
,
encoder_data_input_fields
+
fast_decoder_data_input_fields
,
encoder_util_input_fields
+
fast_decoder_util_input_fields
,
...
...
@@ -540,6 +548,7 @@ def fast_infer(args):
# print np.array(seq_ids)#, np.array(seq_scores)
# print seq_ids.lod()#, seq_scores.lod()
hyps
=
[[]
for
i
in
range
(
len
(
data
))]
scores
=
[[]
for
i
in
range
(
len
(
data
))]
for
i
in
range
(
len
(
seq_ids
.
lod
()[
0
])
-
1
):
# for each source sentence
start
=
seq_ids
.
lod
()[
0
][
i
]
end
=
seq_ids
.
lod
()[
0
][
i
+
1
]
...
...
@@ -550,8 +559,11 @@ def fast_infer(args):
trg_idx2word
[
idx
]
for
idx
in
np
.
array
(
seq_ids
)[
sub_start
:
sub_end
]
]))
scores
[
i
].
append
(
np
.
array
(
seq_scores
)[
sub_end
-
1
])
print
hyps
[
i
]
print
scores
[
i
]
print
len
(
hyps
[
i
]),
[
len
(
hyp
.
split
())
for
hyp
in
hyps
[
i
]]
exit
(
0
)
if
__name__
==
"__main__"
:
...
...
fluid/neural_machine_translation/transformer/model.py
浏览文件 @
3e9fccea
...
...
@@ -123,15 +123,15 @@ def multi_head_attention(queries,
act
=
"softmax"
)
weights
=
layers
.
reshape
(
x
=
weights
,
shape
=
product
.
shape
,
actual_shape
=
post_softmax_shape
)
global
FLAG
if
FLAG
:
print
"hehehehehe"
layers
.
Print
(
scaled_q
)
layers
.
Print
(
k
)
layers
.
Print
(
v
)
layers
.
Print
(
product
)
layers
.
Print
(
weights
)
FLAG
=
False
#
global FLAG
#
if FLAG:
#
print "hehehehehe"
#
layers.Print(scaled_q)
#
layers.Print(k)
#
layers.Print(v)
#
layers.Print(product)
#
layers.Print(weights)
#
FLAG = False
if
dropout_rate
:
weights
=
layers
.
dropout
(
weights
,
dropout_prob
=
dropout_rate
,
is_test
=
False
)
...
...
@@ -694,7 +694,7 @@ def fast_decode(
src_attn_pre_softmax_shape
,
src_attn_post_softmax_shape
),
enc_output
=
pre_enc_output
,
caches
=
pre_caches
)
layers
.
Print
(
logits
)
#
layers.Print(logits)
topk_scores
,
topk_indices
=
layers
.
topk
(
logits
,
k
=
beam_size
)
# layers.Print(topk_scores)
# layers.Print(topk_indices)
...
...
@@ -708,6 +708,7 @@ def fast_decode(
topk_indices
=
layers
.
lod_reset
(
topk_indices
,
pre_ids
)
selected_ids
,
selected_scores
=
layers
.
beam_search
(
pre_ids
=
pre_ids
,
pre_scores
=
pre_scores
,
ids
=
topk_indices
,
scores
=
accu_scores
,
beam_size
=
beam_size
,
...
...
@@ -735,12 +736,16 @@ def fast_decode(
y
=
attn_post_softmax_shape_delta
),
slf_attn_post_softmax_shape
)
max_len_cond
=
layers
.
less_than
(
x
=
step_idx
,
y
=
max_len
)
all_finish_cond
=
layers
.
less_than
(
x
=
step_idx
,
y
=
max_len
)
layers
.
logical_or
(
x
=
max_len_cond
,
y
=
all_finish_cond
,
out
=
cond
)
finished_ids
,
finished_scores
=
layers
.
beam_search_decode
(
ids
,
scores
,
eos_idx
)
length_cond
=
layers
.
less_than
(
x
=
step_idx
,
y
=
max_len
)
finish_cond
=
layers
.
logical_not
(
layers
.
is_empty
(
x
=
selected_ids
))
# layers.Print(length_cond)
# layers.Print(finish_cond)
layers
.
logical_and
(
x
=
length_cond
,
y
=
finish_cond
,
out
=
cond
)
layers
.
Print
(
step_idx
)
# finished_ids, finished_scores = layers.beam_search_decode(ids, scores,
# eos_idx)
finished_ids
,
finished_scores
=
layers
.
beam_search_decode
(
ids
,
scores
,
beam_size
=
beam_size
,
end_id
=
eos_idx
)
return
finished_ids
,
finished_scores
finished_ids
,
finished_scores
=
beam_search
()
...
...
fluid/neural_machine_translation/transformer/train.py
浏览文件 @
3e9fccea
...
...
@@ -288,6 +288,7 @@ def train(args):
start_mark
=
args
.
special_token
[
0
],
end_mark
=
args
.
special_token
[
1
],
unk_mark
=
args
.
special_token
[
2
],
max_length
=
ModelHyperParams
.
max_length
,
clip_last_batch
=
False
)
train_data
=
read_multiple
(
reader
=
train_data
.
batch_generator
)
...
...
@@ -315,6 +316,7 @@ def train(args):
start_mark
=
args
.
special_token
[
0
],
end_mark
=
args
.
special_token
[
1
],
unk_mark
=
args
.
special_token
[
2
],
max_length
=
ModelHyperParams
.
max_length
,
clip_last_batch
=
False
,
shuffle
=
False
,
shuffle_batch
=
False
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录