提交 3aa8cb2f 编写于 作者: Y Yancey1989

clean up code

上级 2ce02d44
......@@ -18,12 +18,13 @@ import multiprocessing
FINISH_EVENT = "FINISH_EVENT"
class PaddleDataLoader(object):
def __init__(self, torch_dataset, indices=None, concurrent=24, queue_size=3072, shuffle=True):
def __init__(self, torch_dataset, indices=None, concurrent=24, queue_size=3072, shuffle=True, shuffle_seed=0):
self.torch_dataset = torch_dataset
self.data_queue = multiprocessing.Queue(queue_size)
self.indices = indices
self.concurrent = concurrent
self.shuffle = shuffle
self.shuffle_seed=shuffle_seed
def _worker_loop(self, dataset, worker_indices, worker_id):
cnt = 0
......@@ -40,10 +41,9 @@ class PaddleDataLoader(object):
worker_processes = []
total_img = len(self.torch_dataset)
print("total image: ", total_img)
#if self.indices is None:
if self.shuffle:
self.indices = [i for i in xrange(total_img)]
random.seed(time.time())
random.seed(self.shuffle_seed)
random.shuffle(self.indices)
print("shuffle indices: %s ..." % self.indices[:10])
......@@ -70,13 +70,13 @@ class PaddleDataLoader(object):
return _reader_creator
def train(traindir, sz, min_scale=0.08):
def train(traindir, sz, min_scale=0.08, shuffle_seed=0):
train_tfms = [
transforms.RandomResizedCrop(sz, scale=(min_scale, 1.0)),
transforms.RandomHorizontalFlip()
]
train_dataset = datasets.ImageFolder(traindir, transforms.Compose(train_tfms))
return PaddleDataLoader(train_dataset).reader()
return PaddleDataLoader(train_dataset, shuffle_seed=shuffle_seed).reader()
def test(valdir, bs, sz, rect_val=False):
if rect_val:
......@@ -155,17 +155,3 @@ def map_idx2ar(idx_ar_sorted, batch_size):
for idx in idxs:
idx2ar[idx] = mean
return idx2ar
if __name__ == "__main__":
#ds, sampler = create_validation_set("/data/imagenet/validation", 128, 288, True, True)
#for item in sampler:
# for idx in item:
# ds[idx]
import time
test_reader = test(valdir="/data/imagenet/validation", bs=64, sz=288, rect_val=True)
start_ts = time.time()
for idx, data in enumerate(test_reader()):
print(idx, data[0], data[0].shape, data[1])
if idx == 2:
break
\ No newline at end of file
......@@ -75,13 +75,12 @@ def get_device_num():
DEVICE_NUM = get_device_num()
def test_parallel(exe, test_args, args, test_prog, feeder, bs):
def test_parallel(exe, test_args, args, test_reader, feeder, bs):
acc_evaluators = []
for i in xrange(len(test_args[2])):
acc_evaluators.append(fluid.metrics.Accuracy())
to_fetch = [v.name for v in test_args[2]]
test_reader = test_args[3]
batch_id = 0
start_ts = time.time()
for batch_id, data in enumerate(test_reader()):
......@@ -101,14 +100,7 @@ def build_program(args, is_train, main_prog, startup_prog, py_reader_startup_pro
dshape=[3, sz, sz]
class_dim=1000
if is_train:
reader = torchvision_reader.train(
traindir="/data/imagenet/%strain" % trn_dir, sz=sz, min_scale=min_scale)
else:
reader = torchvision_reader.test(
valdir="/data/imagenet/%svalidation" % trn_dir, bs=bs*DEVICE_NUM, sz=sz, rect_val=rect_val)
pyreader = None
batched_reader = None
with fluid.program_guard(main_prog, startup_prog):
with fluid.unique_name.guard():
if is_train:
......@@ -121,11 +113,9 @@ def build_program(args, is_train, main_prog, startup_prog, py_reader_startup_pro
name="train_reader_" + str(sz) if is_train else "test_reader_" + str(sz),
use_double_buffer=True)
input, label = fluid.layers.read_file(pyreader)
pyreader.decorate_paddle_reader(paddle.batch(reader, batch_size=bs))
else:
input = fluid.layers.data(name="image", shape=[3, 244, 244], dtype="uint8")
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
batched_reader = paddle.batch(reader, batch_size=bs * DEVICE_NUM)
cast_img_type = "float16" if args.fp16 else "float32"
cast = fluid.layers.cast(input, cast_img_type)
img_mean = fluid.layers.create_global_var([3, 1, 1], 0.0, cast_img_type, name="img_mean", persistable=True)
......@@ -173,8 +163,7 @@ def build_program(args, is_train, main_prog, startup_prog, py_reader_startup_pro
if args.memory_optimize:
fluid.memory_optimize(main_prog, skip_grads=True)
return avg_cost, optimizer, [batch_acc1,
batch_acc5], batched_reader, pyreader, py_reader_startup_prog
return avg_cost, optimizer, [batch_acc1, batch_acc5], pyreader
def refresh_program(args, epoch, sz, trn_dir, bs, val_bs, need_update_start_prog=False, min_scale=0.08, rect_val=False):
......@@ -233,6 +222,18 @@ def refresh_program(args, epoch, sz, trn_dir, bs, val_bs, need_update_start_prog
return train_args, test_args, test_prog, train_exe, test_exe
def prepare_reader(epoch_id, train_py_reader, train_bs, val_bs, trn_dir, img_dim, min_scale, rect_val):
train_reader = torchvision_reader.train(
traindir="/data/imagenet/%strain" % trn_dir, sz=img_dim, min_scale=min_scale, shuffle_seed=epoch_id+1)
train_py_reader.decorate_paddle_reader(paddle.batch(train_reader, batch_size=train_bs))
test_reader = torchvision_reader.test(
valdir="/data/imagenet/%svalidation" % trn_dir, bs=val_bs*DEVICE_NUM, sz=img_dim, rect_val=rect_val)
test_batched_reader = paddle.batch(test_reader, batch_size=val_bs * DEVICE_NUM)
return test_batched_reader
# NOTE: only need to benchmark using parallelexe
def train_parallel(args):
over_all_start = time.time()
......@@ -242,19 +243,31 @@ def train_parallel(args):
test_exe = None
train_args = None
test_args = None
## dynamic batch size, image size...
bs = 224
val_bs = 64
trn_dir = "sz/160/"
img_dim=128
min_scale=0.08
rect_val=False
for epoch_id in range(args.num_epochs):
# program changed
# refresh program
if epoch_id == 0:
train_args, test_args, test_prog, exe, test_exe = refresh_program(args, epoch_id, sz=128, trn_dir="sz/160/", bs=bs, val_bs=val_bs, need_update_start_prog=True)
train_args, test_args, test_prog, exe, test_exe = refresh_program(args, epoch_id, sz=img_dim, trn_dir=trn_dir, bs=bs, val_bs=val_bs, need_update_start_prog=True)
elif epoch_id == 13: #13
bs = 96
train_args, test_args, test_prog, exe, test_exe = refresh_program(args, epoch_id, sz=224, trn_dir="sz/352/", bs=bs, val_bs=val_bs, min_scale=0.087)
trn_dir="sz/352/"
img_dim=224
min_scale=0.087
train_args, test_args, test_prog, exe, test_exe = refresh_program(args, epoch_id, sz=img_dim, trn_dir=trn_dir, bs=bs, val_bs=val_bs, min_scale=min_scale)
elif epoch_id == 25: #25
bs = 50
val_bs=8
train_args, test_args, test_prog, exe, test_exe = refresh_program(args, epoch_id, sz=288, trn_dir="", bs=bs, val_bs=val_bs, min_scale=0.5, rect_val=True)
trn_dir=""
img_dim=288
min_scale=0.5
rect_val=True
train_args, test_args, test_prog, exe, test_exe = refresh_program(args, epoch_id, sz=img_dim, trn_dir=trn_dir, bs=bs, val_bs=val_bs, min_scale=min_scale, rect_val=rect_val)
else:
pass
......@@ -262,7 +275,9 @@ def train_parallel(args):
num_samples = 0
iters = 0
start_time = time.time()
train_args[4].start() # start pyreader
train_py_reader = train_args[3]
test_reader = prepare_reader(epoch_id, train_py_reader, bs, val_bs, trn_dir, img_dim=img_dim, min_scale=min_scale, rect_val=rect_val)
train_py_reader.start() # start pyreader
batch_start_time = time.time()
while True:
fetch_list = [avg_loss.name]
......@@ -282,7 +297,7 @@ def train_parallel(args):
exe.run([])
except fluid.core.EOFException as eof:
print("Finish current epoch, will reset pyreader...")
train_args[4].reset()
train_py_reader.reset()
break
except fluid.core.EnforceNotMet as ex:
traceback.print_exc()
......@@ -293,14 +308,14 @@ def train_parallel(args):
if should_print:
fetched_data = [np.mean(np.array(d)) for d in fetch_ret]
print("Epoch %d, batch %d, loss %s, accucacys: %s, learning_rate %s, py_reader queue_size: %d, avg batch time: %0.4f secs" %
(epoch_id, iters, fetched_data[0], fetched_data[1:-1], fetched_data[-1], train_args[4].queue.size(), (time.time() - batch_start_time)*1.0/args.log_period))
(epoch_id, iters, fetched_data[0], fetched_data[1:-1], fetched_data[-1], train_py_reader.queue.size(), (time.time() - batch_start_time)*1.0/args.log_period))
batch_start_time = time.time()
iters += 1
print_train_time(start_time, time.time(), num_samples)
feed_list = [test_prog.global_block().var(varname) for varname in ("image", "label")]
test_feeder = fluid.DataFeeder(feed_list=feed_list, place=fluid.CUDAPlace(0))
test_ret = test_parallel(test_exe, test_args, args, test_prog, test_feeder, val_bs)
test_ret = test_parallel(test_exe, test_args, args, test_reader, test_feeder, val_bs)
test_acc1, test_acc5 = [np.mean(np.array(v)) for v in test_ret]
print("Epoch: %d, Test Accuracy: %s, Spend %.2f hours\n" %
(epoch_id, [test_acc1, test_acc5], (time.time() - over_all_start) / 3600))
......
......@@ -137,7 +137,7 @@ def lr_decay(lrs, epochs, bs, total_image):
lr_base = lrs[idx][0]
for s in xrange(epoch[0], epoch[1]):
if boundaries:
boundaries.append(boundaries[-1] + step)
boundaries.append(boundaries[-1] + step + 1)
else:
boundaries = [step]
lr = lr_base + ratio * (s - epoch[0])
......@@ -146,46 +146,3 @@ def lr_decay(lrs, epochs, bs, total_image):
values.append(lrs[-1])
print("epoch: [%d:], steps: [%d:], lr:[%f]" % (epochs[-1][-1], boundaries[-1], values[-1]))
return boundaries, values
def linear_lr_decay_by_epoch(lr_values, epochs, bs_values, total_images):
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
import paddle.fluid.layers.tensor as tensor
import math
with paddle.fluid.default_main_program()._lr_schedule_guard():
global_step = _decay_step_counter()
lr = tensor.create_global_var(
shape=[1],
value=0.0,
dtype='float32',
persistable=True,
name="learning_rate")
with fluid.layers.control_flow.Switch() as switch:
last_steps = 0
for idx, epoch_bound in enumerate(epochs):
start_epoch, end_epoch = epoch_bound
linear_epoch = end_epoch - start_epoch
start_lr, end_lr = lr_values[idx]
linear_lr = end_lr - start_lr
for epoch_step in xrange(linear_epoch):
steps = last_steps + (1 + epoch_step) * total_images / bs_values[idx] + 1
boundary_val = tensor.fill_constant(
shape=[1],
dtype='float32',
value=float(steps),
force_cpu=True)
decayed_lr = start_lr + epoch_step * linear_lr * 1.0 / linear_epoch
with switch.case(global_step < boundary_val):
value_var = tensor.fill_constant(shape=[1], dtype='float32', value=float(decayed_lr))
print("steps: [%d], epoch : [%d], decayed_lr: [%f]" % (steps, start_epoch + epoch_step, decayed_lr))
fluid.layers.tensor.assign(value_var, lr)
last_steps = steps
last_value_var = tensor.fill_constant(
shape=[1],
dtype='float32',
value=float(lr_values[-1]))
with switch.default():
fluid.layers.tensor.assign(last_value_var, lr)
return lr
\ No newline at end of file
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册