Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
38388a5e
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
38388a5e
编写于
6月 14, 2019
作者:
H
hutuxian
提交者:
Yi Liu
6月 14, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
use py_reader and support multi-card training (#2410)
* use py_reader and support multi-card training * update README
上级
1ba79a58
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
63 addition
and
44 deletion
+63
-44
PaddleRec/gnn/README.md
PaddleRec/gnn/README.md
+10
-0
PaddleRec/gnn/infer.py
PaddleRec/gnn/infer.py
+1
-1
PaddleRec/gnn/network.py
PaddleRec/gnn/network.py
+8
-2
PaddleRec/gnn/reader.py
PaddleRec/gnn/reader.py
+23
-21
PaddleRec/gnn/train.py
PaddleRec/gnn/train.py
+21
-20
未找到文件。
PaddleRec/gnn/README.md
浏览文件 @
38388a5e
...
@@ -76,11 +76,21 @@ gpu 单机单卡训练
...
@@ -76,11 +76,21 @@ gpu 单机单卡训练
CUDA_VISIBLE_DEVICES
=
1 python
-u
train.py
--use_cuda
1
>
log.txt 2>&1 &
CUDA_VISIBLE_DEVICES
=
1 python
-u
train.py
--use_cuda
1
>
log.txt 2>&1 &
```
```
gpu 单机多卡训练
```
bash
CUDA_VISIBLE_DEVICES
=
0,1,2,3 python
-u
train.py
--use_cuda
1
>
log.txt 2>&1 &
```
cpu 单机训练
cpu 单机训练
```
bash
```
bash
CPU_NUM
=
1 python
-u
train.py
--use_cuda
0
>
log.txt 2>&1 &
CPU_NUM
=
1 python
-u
train.py
--use_cuda
0
>
log.txt 2>&1 &
```
```
cpu 单机多CPU训练
```
bash
CPU_NUM
=
5 python
-u
train.py
--use_cuda
0
>
log.txt 2>&1 &
```
值得注意的是上述单卡训练可以通过加--use_parallel 1参数使用Parallel Executor来进行加速。
值得注意的是上述单卡训练可以通过加--use_parallel 1参数使用Parallel Executor来进行加速。
...
...
PaddleRec/gnn/infer.py
浏览文件 @
38388a5e
...
@@ -59,7 +59,7 @@ def infer(epoch_num):
...
@@ -59,7 +59,7 @@ def infer(epoch_num):
loss_sum
=
0.0
loss_sum
=
0.0
acc_sum
=
0.0
acc_sum
=
0.0
count
=
0
count
=
0
for
data
in
test_data
.
reader
(
batch_size
,
batch_size
,
False
):
for
data
in
test_data
.
reader
(
batch_size
,
batch_size
,
False
)
()
:
res
=
exe
.
run
(
infer_program
,
res
=
exe
.
run
(
infer_program
,
feed
=
feeder
.
feed
(
data
),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
fetch_targets
)
fetch_list
=
fetch_targets
)
...
...
PaddleRec/gnn/network.py
浏览文件 @
38388a5e
...
@@ -58,6 +58,12 @@ def network(batch_size, items_num, hidden_size, step):
...
@@ -58,6 +58,12 @@ def network(batch_size, items_num, hidden_size, step):
dtype
=
"int64"
,
dtype
=
"int64"
,
append_batch_size
=
False
)
append_batch_size
=
False
)
datas
=
[
items
,
seq_index
,
last_index
,
adj_in
,
adj_out
,
mask
,
label
]
py_reader
=
fluid
.
layers
.
create_py_reader_by_data
(
capacity
=
256
,
feed_list
=
datas
,
name
=
'py_reader'
,
use_double_buffer
=
True
)
feed_datas
=
fluid
.
layers
.
read_file
(
py_reader
)
items
,
seq_index
,
last_index
,
adj_in
,
adj_out
,
mask
,
label
=
feed_datas
items_emb
=
layers
.
embedding
(
items_emb
=
layers
.
embedding
(
input
=
items
,
input
=
items
,
param_attr
=
fluid
.
ParamAttr
(
param_attr
=
fluid
.
ParamAttr
(
...
@@ -171,7 +177,7 @@ def network(batch_size, items_num, hidden_size, step):
...
@@ -171,7 +177,7 @@ def network(batch_size, items_num, hidden_size, step):
[
global_attention
,
last
],
axis
=
1
)
#[batch_size, 2*h]
[
global_attention
,
last
],
axis
=
1
)
#[batch_size, 2*h]
final_attention_fc
=
layers
.
fc
(
final_attention_fc
=
layers
.
fc
(
input
=
final_attention
,
input
=
final_attention
,
name
=
"fina_attention_fc"
,
name
=
"fina
l
_attention_fc"
,
size
=
hidden_size
,
size
=
hidden_size
,
bias_attr
=
False
,
bias_attr
=
False
,
act
=
None
,
act
=
None
,
...
@@ -200,4 +206,4 @@ def network(batch_size, items_num, hidden_size, step):
...
@@ -200,4 +206,4 @@ def network(batch_size, items_num, hidden_size, step):
logits
=
logits
,
label
=
label
)
#[batch_size, 1]
logits
=
logits
,
label
=
label
)
#[batch_size, 1]
loss
=
layers
.
reduce_mean
(
softmax
)
# [1]
loss
=
layers
.
reduce_mean
(
softmax
)
# [1]
acc
=
layers
.
accuracy
(
input
=
logits
,
label
=
label
,
k
=
20
)
acc
=
layers
.
accuracy
(
input
=
logits
,
label
=
label
,
k
=
20
)
return
loss
,
acc
return
loss
,
acc
,
py_reader
,
feed_datas
PaddleRec/gnn/reader.py
浏览文件 @
38388a5e
...
@@ -76,7 +76,7 @@ class Data():
...
@@ -76,7 +76,7 @@ class Data():
seq_index
=
np
.
array
(
seq_index
).
astype
(
"int32"
).
reshape
(
seq_index
=
np
.
array
(
seq_index
).
astype
(
"int32"
).
reshape
(
(
batch_size
,
-
1
))
(
batch_size
,
-
1
))
last_index
=
np
.
array
(
last_index
).
astype
(
"int32"
).
reshape
(
last_index
=
np
.
array
(
last_index
).
astype
(
"int32"
).
reshape
(
(
batch_size
,
1
))
(
batch_size
))
adj_in
=
np
.
array
(
adj_in
).
astype
(
"float32"
).
reshape
(
adj_in
=
np
.
array
(
adj_in
).
astype
(
"float32"
).
reshape
(
(
batch_size
,
max_uniq_len
,
max_uniq_len
))
(
batch_size
,
max_uniq_len
,
max_uniq_len
))
adj_out
=
np
.
array
(
adj_out
).
astype
(
"float32"
).
reshape
(
adj_out
=
np
.
array
(
adj_out
).
astype
(
"float32"
).
reshape
(
...
@@ -86,28 +86,30 @@ class Data():
...
@@ -86,28 +86,30 @@ class Data():
return
zip
(
items
,
seq_index
,
last_index
,
adj_in
,
adj_out
,
mask
,
label
)
return
zip
(
items
,
seq_index
,
last_index
,
adj_in
,
adj_out
,
mask
,
label
)
def
reader
(
self
,
batch_size
,
batch_group_size
,
train
=
True
):
def
reader
(
self
,
batch_size
,
batch_group_size
,
train
=
True
):
if
self
.
shuffle
:
def
_reader
():
random
.
shuffle
(
self
.
input
)
if
self
.
shuffle
:
group_remain
=
self
.
length
%
batch_group_size
random
.
shuffle
(
self
.
input
)
for
bg_id
in
range
(
0
,
self
.
length
-
group_remain
,
batch_group_size
):
group_remain
=
self
.
length
%
batch_group_size
cur_bg
=
copy
.
deepcopy
(
self
.
input
[
bg_id
:
bg_id
+
batch_group_size
])
for
bg_id
in
range
(
0
,
self
.
length
-
group_remain
,
batch_group_size
):
cur_bg
=
copy
.
deepcopy
(
self
.
input
[
bg_id
:
bg_id
+
batch_group_size
])
if
train
:
cur_bg
=
sorted
(
cur_bg
,
key
=
lambda
x
:
len
(
x
[
0
]),
reverse
=
True
)
for
i
in
range
(
0
,
batch_group_size
,
batch_size
):
cur_batch
=
cur_bg
[
i
:
i
+
batch_size
]
yield
self
.
make_data
(
cur_batch
,
batch_size
)
#deal with the remaining, discard at most batch_size data
if
group_remain
<
batch_size
:
return
remain_data
=
copy
.
deepcopy
(
self
.
input
[
-
group_remain
:])
if
train
:
if
train
:
cur_bg
=
sorted
(
cur_bg
,
key
=
lambda
x
:
len
(
x
[
0
]),
reverse
=
True
)
remain_data
=
sorted
(
remain_data
,
key
=
lambda
x
:
len
(
x
[
0
]),
reverse
=
True
)
for
i
in
range
(
0
,
batch_group_size
,
batch_size
):
for
i
in
range
(
0
,
batch_group_size
,
batch_size
):
cur_batch
=
cur_bg
[
i
:
i
+
batch_size
]
if
i
+
batch_size
<=
len
(
remain_data
):
yield
self
.
make_data
(
cur_batch
,
batch_size
)
cur_batch
=
remain_data
[
i
:
i
+
batch_size
]
yield
self
.
make_data
(
cur_batch
,
batch_size
)
#deal with the remaining, discard at most batch_size data
return
_reader
if
group_remain
<
batch_size
:
return
remain_data
=
copy
.
deepcopy
(
self
.
input
[
-
group_remain
:])
if
train
:
remain_data
=
sorted
(
remain_data
,
key
=
lambda
x
:
len
(
x
[
0
]),
reverse
=
True
)
for
i
in
range
(
0
,
batch_group_size
,
batch_size
):
if
i
+
batch_size
<=
len
(
remain_data
):
cur_batch
=
remain_data
[
i
:
i
+
batch_size
]
yield
self
.
make_data
(
cur_batch
,
batch_size
)
def
read_config
(
path
):
def
read_config
(
path
):
...
...
PaddleRec/gnn/train.py
浏览文件 @
38388a5e
...
@@ -71,7 +71,7 @@ def train():
...
@@ -71,7 +71,7 @@ def train():
batch_size
=
args
.
batch_size
batch_size
=
args
.
batch_size
items_num
=
reader
.
read_config
(
args
.
config_path
)
items_num
=
reader
.
read_config
(
args
.
config_path
)
loss
,
acc
=
network
.
network
(
batch_size
,
items_num
,
args
.
hidden_size
,
loss
,
acc
,
py_reader
,
feed_datas
=
network
.
network
(
batch_size
,
items_num
,
args
.
hidden_size
,
args
.
step
)
args
.
step
)
data_reader
=
reader
.
Data
(
args
.
train_path
,
True
)
data_reader
=
reader
.
Data
(
args
.
train_path
,
True
)
...
@@ -98,10 +98,7 @@ def train():
...
@@ -98,10 +98,7 @@ def train():
all_vocab
.
set
(
all_vocab
.
set
(
np
.
arange
(
1
,
items_num
).
astype
(
"int64"
).
reshape
((
-
1
,
1
)),
place
)
np
.
arange
(
1
,
items_num
).
astype
(
"int64"
).
reshape
((
-
1
,
1
)),
place
)
feed_list
=
[
feed_list
=
[
e
.
name
for
e
in
feed_datas
]
"items"
,
"seq_index"
,
"last_index"
,
"adj_in"
,
"adj_out"
,
"mask"
,
"label"
]
feeder
=
fluid
.
DataFeeder
(
feed_list
=
feed_list
,
place
=
place
)
if
use_parallel
:
if
use_parallel
:
train_exe
=
fluid
.
ParallelExecutor
(
train_exe
=
fluid
.
ParallelExecutor
(
...
@@ -118,23 +115,27 @@ def train():
...
@@ -118,23 +115,27 @@ def train():
acc_sum
=
0.0
acc_sum
=
0.0
global_step
=
0
global_step
=
0
PRINT_STEP
=
500
PRINT_STEP
=
500
py_reader
.
decorate_paddle_reader
(
data_reader
.
reader
(
batch_size
,
batch_size
*
20
,
True
))
for
i
in
range
(
args
.
epoch_num
):
for
i
in
range
(
args
.
epoch_num
):
epoch_sum
=
[]
epoch_sum
=
[]
for
data
in
data_reader
.
reader
(
batch_size
,
batch_size
*
20
,
True
):
py_reader
.
start
()
res
=
train_exe
.
run
(
feed
=
feeder
.
feed
(
data
),
try
:
fetch_list
=
[
loss
.
name
,
acc
.
name
])
while
True
:
loss_sum
+=
res
[
0
]
res
=
train_exe
.
run
(
fetch_list
=
[
loss
.
name
,
acc
.
name
])
acc_sum
+=
res
[
1
]
loss_sum
+=
res
[
0
].
mean
()
epoch_sum
.
append
(
res
[
0
])
acc_sum
+=
res
[
1
].
mean
()
global_step
+=
1
epoch_sum
.
append
(
res
[
0
].
mean
())
if
global_step
%
PRINT_STEP
==
0
:
global_step
+=
1
ce_info
.
append
([
loss_sum
/
PRINT_STEP
,
acc_sum
/
PRINT_STEP
])
if
global_step
%
PRINT_STEP
==
0
:
total_time
.
append
(
time
.
time
()
-
start_time
)
ce_info
.
append
([
loss_sum
/
PRINT_STEP
,
acc_sum
/
PRINT_STEP
])
logger
.
info
(
"global_step: %d, loss: %.4lf, train_acc: %.4lf"
%
(
total_time
.
append
(
time
.
time
()
-
start_time
)
global_step
,
loss_sum
/
PRINT_STEP
,
acc_sum
/
PRINT_STEP
))
logger
.
info
(
"global_step: %d, loss: %.4lf, train_acc: %.4lf"
%
(
loss_sum
=
0.0
global_step
,
loss_sum
/
PRINT_STEP
,
acc_sum
/
PRINT_STEP
))
acc_sum
=
0.0
loss_sum
=
0.0
start_time
=
time
.
time
()
acc_sum
=
0.0
start_time
=
time
.
time
()
except
fluid
.
core
.
EOFException
:
py_reader
.
reset
()
logger
.
info
(
"epoch loss: %.4lf"
%
(
np
.
mean
(
epoch_sum
)))
logger
.
info
(
"epoch loss: %.4lf"
%
(
np
.
mean
(
epoch_sum
)))
save_dir
=
args
.
model_path
+
"/epoch_"
+
str
(
i
)
save_dir
=
args
.
model_path
+
"/epoch_"
+
str
(
i
)
fetch_vars
=
[
loss
,
acc
]
fetch_vars
=
[
loss
,
acc
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录