Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
363b62d1
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
363b62d1
编写于
5月 08, 2017
作者:
W
wwhu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
bug fix
上级
3bd88f6a
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
23 addition
and
26 deletion
+23
-26
scheduled_sampling/scheduled_sampling.py
scheduled_sampling/scheduled_sampling.py
+23
-26
未找到文件。
scheduled_sampling/scheduled_sampling.py
浏览文件 @
363b62d1
...
...
@@ -22,7 +22,7 @@ def gen_schedule_data(reader):
def
data_reader
():
for
src_ids
,
trg_ids
,
trg_ids_next
in
reader
():
yield
src_ids
,
trg_ids
,
trg_ids_next
,
\
schedule_generator
.
processBatch
(
len
(
trg_ids
)
)
[
0
]
+
schedule_generator
.
processBatch
(
len
(
trg_ids
)
-
1
)
return
data_reader
...
...
@@ -72,11 +72,13 @@ def seqToseq_net(source_dict_dim, target_dict_dim, is_generating=False):
encoded_proj
=
enc_proj
,
decoder_state
=
decoder_mem
)
g
enerated_word
_memory
=
paddle
.
layer
.
memory
(
name
=
'g
enerated_word'
,
size
=
1
,
boot_with_const_id
=
0
)
g
ru_out
_memory
=
paddle
.
layer
.
memory
(
name
=
'g
ru_out'
,
size
=
target_dict_dim
)
#
, boot_with_const_id=0)
generated_word_emb
=
embedding
(
input
=
generated_word_memory
,
generated_word
=
paddle
.
layer
.
max_id
(
input
=
gru_out_memory
)
generated_word_emb
=
paddle
.
layer
.
embedding
(
input
=
generated_word
,
size
=
word_vector_dim
,
param_attr
=
paddle
.
attr
.
ParamAttr
(
name
=
'_target_language_embedding'
))
...
...
@@ -94,13 +96,12 @@ def seqToseq_net(source_dict_dim, target_dict_dim, is_generating=False):
size
=
decoder_size
)
with
paddle
.
layer
.
mixed
(
name
=
'gru_out'
,
size
=
target_dict_dim
,
bias_attr
=
True
,
act
=
paddle
.
activation
.
Softmax
())
as
out
:
out
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
gru_step
)
max_id
(
input
=
out
,
name
=
'generated_word'
)
return
out
def
gru_decoder_with_attention_test
(
enc_vec
,
enc_proj
,
current_word
):
...
...
@@ -150,11 +151,6 @@ def seqToseq_net(source_dict_dim, target_dict_dim, is_generating=False):
type
=
paddle
.
data_type
.
integer_value_sequence
(
2
))
group_inputs
.
append
(
true_token_flags
)
# For decoder equipped with attention mechanism, in training,
# target embeding (the groudtruth) is the data input,
# while encoded source sequence is accessed to as an unbounded memory.
# Here, the StaticInput defines a read-only memory
# for the recurrent_group.
decoder
=
paddle
.
layer
.
recurrent_group
(
name
=
decoder_group_name
,
step
=
gru_decoder_with_attention_train
,
...
...
@@ -167,15 +163,6 @@ def seqToseq_net(source_dict_dim, target_dict_dim, is_generating=False):
return
cost
else
:
# In generation, the decoder predicts a next target word based on
# the encoded source sequence and the last generated target word.
# The encoded source sequence (encoder's output) must be specified by
# StaticInput, which is a read-only memory.
# Embedding of the last generated word is automatically gotten by
# GeneratedInputs, which is initialized by a start mark, such as <s>,
# and must be included in generation.
trg_embedding
=
paddle
.
layer
.
GeneratedInputV2
(
size
=
target_dict_dim
,
embedding_name
=
'_target_language_embedding'
,
...
...
@@ -197,6 +184,7 @@ def seqToseq_net(source_dict_dim, target_dict_dim, is_generating=False):
def
main
():
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
is_generating
=
False
model_path_for_generating
=
'params_pass_1.tar.gz'
# source and target dict dim.
dict_size
=
30000
...
...
@@ -215,10 +203,14 @@ def main():
cost
=
cost
,
parameters
=
parameters
,
update_equation
=
optimizer
)
# define data reader
wmt14_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
wmt14
.
train
(
dict_size
),
buf_size
=
8192
),
gen_schedule_data
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
wmt14
.
train
(
dict_size
),
buf_size
=
8192
)),
batch_size
=
5
)
feeding
=
{
'source_language_word'
:
0
,
'target_language_word'
:
1
,
'target_language_next_word'
:
2
,
'true_token_flag'
:
3
}
# define event_handler callback
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
...
...
@@ -229,10 +221,14 @@ def main():
else
:
sys
.
stdout
.
write
(
'.'
)
sys
.
stdout
.
flush
()
if
isinstance
(
event
,
paddle
.
event
.
EndPass
):
# save parameters
with
gzip
.
open
(
'params_pass_%d.tar.gz'
%
event
.
pass_id
,
'w'
)
as
f
:
parameters
.
to_tar
(
f
)
# start to train
trainer
.
train
(
reader
=
wmt14_reader
,
event_handler
=
event_handler
,
num_passes
=
2
)
reader
=
wmt14_reader
,
event_handler
=
event_handler
,
feeding
=
feeding
,
num_passes
=
2
)
# generate a english sequence to french
else
:
...
...
@@ -246,8 +242,9 @@ def main():
break
beam_gen
=
seqToseq_net
(
source_dict_dim
,
target_dict_dim
,
is_generating
)
# get the pretrained model, whose bleu = 26.92
parameters
=
paddle
.
dataset
.
wmt14
.
model
()
# get the trained model
with
gzip
.
open
(
model_path_for_generating
,
'r'
)
as
f
:
parameters
=
Parameters
.
from_tar
(
f
)
# prob is the prediction probabilities, and id is the prediction word.
beam_result
=
paddle
.
infer
(
output_layer
=
beam_gen
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录