Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
35f9269a
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
35f9269a
编写于
8月 06, 2018
作者:
B
baiyfbupt
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add ce
上级
1ae49ef4
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
108 addition
and
27 deletion
+108
-27
fluid/object_detection/.move.sh
fluid/object_detection/.move.sh
+0
-1
fluid/object_detection/.run_ce.sh
fluid/object_detection/.run_ce.sh
+3
-3
fluid/object_detection/_ce.py
fluid/object_detection/_ce.py
+68
-0
fluid/object_detection/train.py
fluid/object_detection/train.py
+37
-23
未找到文件。
fluid/object_detection/.move.sh
已删除
100644 → 0
浏览文件 @
1ae49ef4
cp
-r
./data/pascalvoc/. /home/.cache/paddle/dataset/pascalvoc
fluid/object_detection/.run.sh
→
fluid/object_detection/.run
_ce
.sh
100644 → 100755
浏览文件 @
35f9269a
...
@@ -5,7 +5,7 @@ export CUDA_VISIBLE_DEVICES=$cudaid
...
@@ -5,7 +5,7 @@ export CUDA_VISIBLE_DEVICES=$cudaid
if
[
!
-d
"/root/.cache/paddle/dataset/pascalvoc"
]
;
then
if
[
!
-d
"/root/.cache/paddle/dataset/pascalvoc"
]
;
then
mkdir
-p
/root/.cache/paddle/dataset/pascalvoc
mkdir
-p
/root/.cache/paddle/dataset/pascalvoc
./data/pascalvoc/download.sh
#
./data/pascalvoc/download.sh
bash ./.move.sh
cp
-r
./data/pascalvoc/. /home/.cache/paddle/dataset/pascalvoc
fi
fi
FLAGS_benchmark
=
true
python train.py
--
batch_size
=
64
--num_passes
=
2
--for_model_ce
=
True
--data_dir
=
/root/.cache/paddle/dataset/pascalvoc/
FLAGS_benchmark
=
true
python train.py
--
for_model_ce
=
True
--batch_size
=
64
--num_passes
=
2
--data_dir
=
/root/.cache/paddle/dataset/pascalvoc/ | python _ce.py
fluid/object_detection/_ce.py
0 → 100644
浏览文件 @
35f9269a
####this file is only used for continuous evaluation test!
import
os
import
sys
sys
.
path
.
append
(
os
.
environ
[
'ceroot'
])
from
kpi
import
CostKpi
,
DurationKpi
,
AccKpi
#### NOTE kpi.py should shared in models in some way!!!!
train_cost_kpi
=
CostKpi
(
'train_cost'
,
0.02
,
actived
=
True
)
test_acc_kpi
=
AccKpi
(
'test_acc'
,
0.005
,
actived
=
True
)
train_duration_kpi
=
DurationKpi
(
'train_duration'
,
0.06
,
actived
=
True
)
train_acc_kpi
=
AccKpi
(
'train_acc'
,
0.005
,
actived
=
True
)
tracking_kpis
=
[
train_acc_kpi
,
train_cost_kpi
,
test_acc_kpi
,
train_duration_kpi
,
]
def
parse_log
(
log
):
'''
This method should be implemented by model developers.
The suggestion:
each line in the log should be key, value, for example:
"
train_cost
\t
1.0
test_cost
\t
1.0
train_cost
\t
1.0
train_cost
\t
1.0
train_acc
\t
1.2
"
'''
#kpi_map = {}
for
line
in
log
.
split
(
'
\n
'
):
fs
=
line
.
strip
().
split
(
'
\t
'
)
print
(
fs
)
if
len
(
fs
)
==
3
and
fs
[
0
]
==
'kpis'
:
print
(
"-----%s"
%
fs
)
kpi_name
=
fs
[
1
]
kpi_value
=
float
(
fs
[
2
])
#kpi_map[kpi_name] = kpi_value
yield
kpi_name
,
kpi_value
#return kpi_map
def
log_to_ce
(
log
):
kpi_tracker
=
{}
for
kpi
in
tracking_kpis
:
kpi_tracker
[
kpi
.
name
]
=
kpi
for
(
kpi_name
,
kpi_value
)
in
parse_log
(
log
):
print
(
kpi_name
,
kpi_value
)
kpi_tracker
[
kpi_name
].
add_record
(
kpi_value
)
kpi_tracker
[
kpi_name
].
persist
()
if
__name__
==
'__main__'
:
log
=
sys
.
stdin
.
read
()
print
(
"*****"
)
print
log
print
(
"****"
)
log_to_ce
(
log
)
fluid/object_detection/train.py
浏览文件 @
35f9269a
...
@@ -23,7 +23,7 @@ add_arg('dataset', str, 'pascalvoc', "coco2014, coco2017, and pascalv
...
@@ -23,7 +23,7 @@ add_arg('dataset', str, 'pascalvoc', "coco2014, coco2017, and pascalv
add_arg
(
'model_save_dir'
,
str
,
'model'
,
"The path to save model."
)
add_arg
(
'model_save_dir'
,
str
,
'model'
,
"The path to save model."
)
add_arg
(
'pretrained_model'
,
str
,
'pretrained/ssd_mobilenet_v1_coco/'
,
"The init model path."
)
add_arg
(
'pretrained_model'
,
str
,
'pretrained/ssd_mobilenet_v1_coco/'
,
"The init model path."
)
add_arg
(
'apply_distort'
,
bool
,
True
,
"Whether apply distort."
)
add_arg
(
'apply_distort'
,
bool
,
True
,
"Whether apply distort."
)
add_arg
(
'apply_expand'
,
bool
,
True
,
"Whether apple
y expand."
)
add_arg
(
'apply_expand'
,
bool
,
True
,
"Whether appl
y expand."
)
add_arg
(
'nms_threshold'
,
float
,
0.45
,
"NMS threshold."
)
add_arg
(
'nms_threshold'
,
float
,
0.45
,
"NMS threshold."
)
add_arg
(
'ap_version'
,
str
,
'11point'
,
"integral, 11point."
)
add_arg
(
'ap_version'
,
str
,
'11point'
,
"integral, 11point."
)
add_arg
(
'resize_h'
,
int
,
300
,
"The resized image height."
)
add_arg
(
'resize_h'
,
int
,
300
,
"The resized image height."
)
...
@@ -32,10 +32,8 @@ add_arg('mean_value_B', float, 127.5, "Mean value for B channel which will
...
@@ -32,10 +32,8 @@ add_arg('mean_value_B', float, 127.5, "Mean value for B channel which will
add_arg
(
'mean_value_G'
,
float
,
127.5
,
"Mean value for G channel which will be subtracted."
)
#116.78
add_arg
(
'mean_value_G'
,
float
,
127.5
,
"Mean value for G channel which will be subtracted."
)
#116.78
add_arg
(
'mean_value_R'
,
float
,
127.5
,
"Mean value for R channel which will be subtracted."
)
#103.94
add_arg
(
'mean_value_R'
,
float
,
127.5
,
"Mean value for R channel which will be subtracted."
)
#103.94
add_arg
(
'is_toy'
,
int
,
0
,
"Toy for quick debug, 0 means using all data, while n means using only n sample."
)
add_arg
(
'is_toy'
,
int
,
0
,
"Toy for quick debug, 0 means using all data, while n means using only n sample."
)
add_arg
(
'for_model_ce'
,
bool
,
False
,
"Use CE to evaluate the model"
)
add_arg
(
'data_dir'
,
str
,
'data/pascalvoc'
,
"data directory"
)
add_arg
(
'data_dir'
,
str
,
'data/pascalvoc'
,
"data directory"
)
add_arg
(
'skip_batch_num'
,
int
,
5
,
"the num of minibatch to skip."
)
add_arg
(
'for_model_ce'
,
bool
,
False
,
"Use CE to evaluate the model"
)
add_arg
(
'iterations'
,
int
,
120
,
"mini batchs."
)
#yapf: enable
#yapf: enable
...
@@ -151,21 +149,42 @@ def train(args,
...
@@ -151,21 +149,42 @@ def train(args,
save_model
(
'best_model'
)
save_model
(
'best_model'
)
print
(
"Pass {0}, test map {1}"
.
format
(
pass_id
,
test_map
))
print
(
"Pass {0}, test map {1}"
.
format
(
pass_id
,
test_map
))
return
best_map
return
best_map
'''
def ce_map(pass_id, best_map):
_, accum_map = map_eval.get_map_var()
map_eval.reset(exe)
every_train_map = []
for batch_id, data in enumerate(train_reader()):
out, = exe.run(test_program,
feed=feeder.feed(data),
fetch_list=[accum_map])
if batch_id % 20 == 0:
every_train_map.append(out)
train_map = np.mean(every_train_map)
_, accum_map = map_eval.get_map_var()
map_eval.reset(exe)
every_test_map = []
for batch_id, data in enumerate(test_reader()):
out, = exe.run(test_program,
feed=feeder.feed(data),
fetch_list=[accum_map])
if batch_id % 20 == 0:
every_test_map.append(out)
test_map = np.mean(every_test_map)
return (train_map, test_map)
'''
train_num
=
0
train_num
=
0
total_train_time
=
0.0
total_train_time
=
0.0
for
pass_id
in
range
(
num_passes
):
for
pass_id
in
range
(
num_passes
):
start_time
=
time
.
time
()
start_time
=
time
.
time
()
prev_start_time
=
start_time
prev_start_time
=
start_time
# end_time = 0
every_pass_loss
=
[]
every_pass_loss
=
[]
iter
=
0
iter
=
0
pass_duration
=
0.0
pass_duration
=
0.0
for
batch_id
,
data
in
enumerate
(
train_reader
()):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
prev_start_time
=
start_time
prev_start_time
=
start_time
start_time
=
time
.
time
()
start_time
=
time
.
time
()
if
args
.
for_model_ce
and
iter
==
args
.
iterations
:
break
if
len
(
data
)
<
(
devices_num
*
2
):
if
len
(
data
)
<
(
devices_num
*
2
):
print
(
"There are too few data to train on all devices."
)
print
(
"There are too few data to train on all devices."
)
continue
continue
...
@@ -176,29 +195,24 @@ def train(args,
...
@@ -176,29 +195,24 @@ def train(args,
loss_v
,
=
exe
.
run
(
fluid
.
default_main_program
(),
loss_v
,
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
loss
])
fetch_list
=
[
loss
])
# end_time = time.time()
loss_v
=
np
.
mean
(
np
.
array
(
loss_v
))
loss_v
=
np
.
mean
(
np
.
array
(
loss_v
))
if
batch_id
%
20
==
0
:
if
batch_id
%
20
==
0
:
print
(
"Pass {0}, batch {1}, loss {2}, time {3}"
.
format
(
print
(
"Pass {0}, batch {1}, loss {2}, time {3}"
.
format
(
pass_id
,
batch_id
,
loss_v
,
start_time
-
prev_start_time
))
pass_id
,
batch_id
,
loss_v
,
start_time
-
prev_start_time
))
if
args
.
for_model_ce
and
iter
>=
args
.
skip_batch_num
or
pass_id
!=
0
:
end_time
=
time
.
time
()
batch_duration
=
time
.
time
()
-
start_time
every_pass_loss
.
append
(
loss_v
)
pass_duration
+=
batch_duration
train_num
+=
len
(
data
)
every_pass_loss
.
append
(
loss_v
)
iter
+=
1
total_train_time
+=
pass_duration
total_train_time
+=
pass_duration
train_avg_loss
=
np
.
mean
(
every_pass_loss
)
if
args
.
for_model_ce
and
pass_id
==
num_passes
-
1
:
examples_per_sec
=
train_num
/
total_train_time
cost
=
np
.
mean
(
every_pass_loss
)
with
open
(
"train_speed_factor.txt"
,
'w'
)
as
f
:
f
.
write
(
'{:f}
\n
'
.
format
(
examples_per_sec
))
with
open
(
"train_cost_factor.txt"
,
'a+'
)
as
f
:
f
.
write
(
'{:f}
\n
'
.
format
(
cost
))
best_map
=
test
(
pass_id
,
best_map
)
best_map
=
test
(
pass_id
,
best_map
)
if
args
.
for_model_ce
:
#map_kpi = ce_map(pass_id, best_map)
#print ("kpis train_acc %f" % train_avg_acc)
print
(
"kpis train_cost %f"
%
train_avg_loss
)
#print ("kpis test_acc %f" % test_avg_acc)
print
(
"kpis train_duration %f"
%
(
end_time
-
start_time
))
if
pass_id
%
10
==
0
or
pass_id
==
num_passes
-
1
:
if
pass_id
%
10
==
0
or
pass_id
==
num_passes
-
1
:
save_model
(
str
(
pass_id
))
save_model
(
str
(
pass_id
))
print
(
"Best test map {0}"
.
format
(
best_map
))
print
(
"Best test map {0}"
.
format
(
best_map
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录