Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
35b8511e
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
35b8511e
编写于
1月 08, 2019
作者:
Z
zhengya01
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add ce for human_pose_estimation
上级
a5ededde
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
446 addition
and
0 deletion
+446
-0
fluid/PaddleCV/human_pose_estimation/.run_ce.sh
fluid/PaddleCV/human_pose_estimation/.run_ce.sh
+16
-0
fluid/PaddleCV/human_pose_estimation/__init__.py
fluid/PaddleCV/human_pose_estimation/__init__.py
+0
-0
fluid/PaddleCV/human_pose_estimation/_ce.py
fluid/PaddleCV/human_pose_estimation/_ce.py
+61
-0
fluid/PaddleCV/human_pose_estimation/lib/coco_reader_ce.py
fluid/PaddleCV/human_pose_estimation/lib/coco_reader_ce.py
+330
-0
fluid/PaddleCV/human_pose_estimation/train.py
fluid/PaddleCV/human_pose_estimation/train.py
+39
-0
未找到文件。
fluid/PaddleCV/human_pose_estimation/.run_ce.sh
0 → 100755
浏览文件 @
35b8511e
#!/bin/bash
export
MKL_NUM_THREADS
=
1
export
OMP_NUM_THREADS
=
1
cudaid
=
${
face_detection
:
=7
}
# use 0-th card as default
export
CUDA_VISIBLE_DEVICES
=
$cudaid
FLAGS_benchmark
=
true
python train.py
--dataset
=
coco
--num_epochs
=
2
--batch_num
=
10
--enable_ce
| python _ce.py
cudaid
=
${
face_detection_m
:
=4,5,6,7
}
# use 0,1,2,3 card as default
export
CUDA_VISIBLE_DEVICES
=
$cudaid
FLAGS_benchmark
=
true
python train.py
--dataset
=
coco
--num_epochs
=
2
--batch_num
=
10
--enable_ce
| python _ce.py
fluid/PaddleCV/human_pose_estimation/__init__.py
0 → 100644
浏览文件 @
35b8511e
fluid/PaddleCV/human_pose_estimation/_ce.py
0 → 100644
浏览文件 @
35b8511e
# this file is only used for continuous evaluation test!
import
os
import
sys
sys
.
path
.
append
(
os
.
environ
[
'ceroot'
])
from
kpi
import
CostKpi
from
kpi
import
DurationKpi
each_pass_duration_card1_kpi
=
DurationKpi
(
'each_pass_duration_card1'
,
0.08
,
0
,
actived
=
True
)
train_loss_card1_kpi
=
CostKpi
(
'train_loss_card1'
,
0.08
,
0
)
each_pass_duration_card4_kpi
=
DurationKpi
(
'each_pass_duration_card4'
,
0.08
,
0
,
actived
=
True
)
train_loss_card4_kpi
=
CostKpi
(
'train_loss_card4'
,
0.08
,
0
)
tracking_kpis
=
[
each_pass_duration_card1_kpi
,
train_loss_card1_kpi
,
each_pass_duration_card4_kpi
,
train_loss_card4_kpi
,
]
def
parse_log
(
log
):
'''
This method should be implemented by model developers.
The suggestion:
each line in the log should be key, value, for example:
"
train_cost
\t
1.0
test_cost
\t
1.0
train_cost
\t
1.0
train_cost
\t
1.0
train_acc
\t
1.2
"
'''
for
line
in
log
.
split
(
'
\n
'
):
fs
=
line
.
strip
().
split
(
'
\t
'
)
print
(
fs
)
if
len
(
fs
)
==
3
and
fs
[
0
]
==
'kpis'
:
kpi_name
=
fs
[
1
]
kpi_value
=
float
(
fs
[
2
])
yield
kpi_name
,
kpi_value
def
log_to_ce
(
log
):
kpi_tracker
=
{}
for
kpi
in
tracking_kpis
:
kpi_tracker
[
kpi
.
name
]
=
kpi
for
(
kpi_name
,
kpi_value
)
in
parse_log
(
log
):
print
(
kpi_name
,
kpi_value
)
kpi_tracker
[
kpi_name
].
add_record
(
kpi_value
)
kpi_tracker
[
kpi_name
].
persist
()
if
__name__
==
'__main__'
:
log
=
sys
.
stdin
.
read
()
log_to_ce
(
log
)
fluid/PaddleCV/human_pose_estimation/lib/coco_reader_ce.py
0 → 100644
浏览文件 @
35b8511e
# Copyright (c) 2018-present, Baidu, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
"""Data reader for COCO dataset."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
functools
import
numpy
as
np
import
cv2
import
random
from
utils.transforms
import
fliplr_joints
from
utils.transforms
import
get_affine_transform
from
utils.transforms
import
affine_transform
from
lib.base_reader
import
visualize
,
generate_target
from
pycocotools.coco
import
COCO
# NOTE
# -- COCO Datatset --
# "keypoints":
# {
# 0: "nose",
# 1: "left_eye",
# 2: "right_eye",
# 3: "left_ear",
# 4: "right_ear",
# 5: "left_shoulder",
# 6: "right_shoulder",
# 7: "left_elbow",
# 8: "right_elbow",
# 9: "left_wrist",
# 10: "right_wrist",
# 11: "left_hip",
# 12: "right_hip",
# 13: "left_knee",
# 14: "right_knee",
# 15: "left_ankle",
# 16: "right_ankle"
# },
#
# "skeleton":
# [
# [16,14],[14,12],[17,15],[15,13],[12,13],[6,12],[7,13], [6,7],[6,8],
# [7,9],[8,10],[9,11],[2,3],[1,2],[1,3],[2,4],[3,5],[4,6],[5,7]
# ]
class
Config
:
"""Configurations for COCO dataset.
"""
DEBUG
=
False
TMPDIR
=
'tmp_fold_for_debug'
# For reader
BUF_SIZE
=
102400
THREAD
=
1
if
DEBUG
else
8
# have to be larger than 0
# Fixed infos of dataset
DATAROOT
=
'data/coco'
IMAGEDIR
=
'images'
NUM_JOINTS
=
17
FLIP_PAIRS
=
[[
1
,
2
],
[
3
,
4
],
[
5
,
6
],
[
7
,
8
],
[
9
,
10
],
[
11
,
12
],
[
13
,
14
],
[
15
,
16
]]
PARENT_IDS
=
None
# CFGS
SCALE_FACTOR
=
0.3
ROT_FACTOR
=
40
FLIP
=
True
TARGET_TYPE
=
'gaussian'
SIGMA
=
3
IMAGE_SIZE
=
[
288
,
384
]
HEATMAP_SIZE
=
[
72
,
96
]
ASPECT_RATIO
=
IMAGE_SIZE
[
0
]
*
1.0
/
IMAGE_SIZE
[
1
]
MEAN
=
[
0.485
,
0.456
,
0.406
]
STD
=
[
0.229
,
0.224
,
0.225
]
PIXEL_STD
=
200
cfg
=
Config
()
def
_box2cs
(
box
):
x
,
y
,
w
,
h
=
box
[:
4
]
return
_xywh2cs
(
x
,
y
,
w
,
h
)
def
_xywh2cs
(
x
,
y
,
w
,
h
):
center
=
np
.
zeros
((
2
),
dtype
=
np
.
float32
)
center
[
0
]
=
x
+
w
*
0.5
center
[
1
]
=
y
+
h
*
0.5
if
w
>
cfg
.
ASPECT_RATIO
*
h
:
h
=
w
*
1.0
/
cfg
.
ASPECT_RATIO
elif
w
<
cfg
.
ASPECT_RATIO
*
h
:
w
=
h
*
cfg
.
ASPECT_RATIO
scale
=
np
.
array
(
[
w
*
1.0
/
cfg
.
PIXEL_STD
,
h
*
1.0
/
cfg
.
PIXEL_STD
],
dtype
=
np
.
float32
)
if
center
[
0
]
!=
-
1
:
scale
=
scale
*
1.25
return
center
,
scale
def
_select_data
(
db
):
db_selected
=
[]
for
rec
in
db
:
num_vis
=
0
joints_x
=
0.0
joints_y
=
0.0
for
joint
,
joint_vis
in
zip
(
rec
[
'joints_3d'
],
rec
[
'joints_3d_vis'
]):
if
joint_vis
[
0
]
<=
0
:
continue
num_vis
+=
1
joints_x
+=
joint
[
0
]
joints_y
+=
joint
[
1
]
if
num_vis
==
0
:
continue
joints_x
,
joints_y
=
joints_x
/
num_vis
,
joints_y
/
num_vis
area
=
rec
[
'scale'
][
0
]
*
rec
[
'scale'
][
1
]
*
(
cfg
.
PIXEL_STD
**
2
)
joints_center
=
np
.
array
([
joints_x
,
joints_y
])
bbox_center
=
np
.
array
(
rec
[
'center'
])
diff_norm2
=
np
.
linalg
.
norm
((
joints_center
-
bbox_center
),
2
)
ks
=
np
.
exp
(
-
1.0
*
(
diff_norm2
**
2
)
/
((
0.2
)
**
2
*
2.0
*
area
))
metric
=
(
0.2
/
16
)
*
num_vis
+
0.45
-
0.2
/
16
if
ks
>
metric
:
db_selected
.
append
(
rec
)
print
(
'=> num db: {}'
.
format
(
len
(
db
)))
print
(
'=> num selected db: {}'
.
format
(
len
(
db_selected
)))
return
db_selected
def
_load_coco_keypoint_annotation
(
image_set_index
,
coco
,
_coco_ind_to_class_ind
,
image_set
):
"""Ground truth bbox and keypoints.
"""
print
(
'generating coco gt_db...'
)
gt_db
=
[]
for
index
in
image_set_index
:
im_ann
=
coco
.
loadImgs
(
index
)[
0
]
width
=
im_ann
[
'width'
]
height
=
im_ann
[
'height'
]
annIds
=
coco
.
getAnnIds
(
imgIds
=
index
,
iscrowd
=
False
)
objs
=
coco
.
loadAnns
(
annIds
)
# Sanitize bboxes
valid_objs
=
[]
for
obj
in
objs
:
x
,
y
,
w
,
h
=
obj
[
'bbox'
]
x1
=
np
.
max
((
0
,
x
))
y1
=
np
.
max
((
0
,
y
))
x2
=
np
.
min
((
width
-
1
,
x1
+
np
.
max
((
0
,
w
-
1
))))
y2
=
np
.
min
((
height
-
1
,
y1
+
np
.
max
((
0
,
h
-
1
))))
if
obj
[
'area'
]
>
0
and
x2
>=
x1
and
y2
>=
y1
:
obj
[
'clean_bbox'
]
=
[
x1
,
y1
,
x2
-
x1
,
y2
-
y1
]
valid_objs
.
append
(
obj
)
objs
=
valid_objs
rec
=
[]
for
obj
in
objs
:
cls
=
_coco_ind_to_class_ind
[
obj
[
'category_id'
]]
if
cls
!=
1
:
continue
# Ignore objs without keypoints annotation
if
max
(
obj
[
'keypoints'
])
==
0
:
continue
joints_3d
=
np
.
zeros
((
cfg
.
NUM_JOINTS
,
3
),
dtype
=
np
.
float
)
joints_3d_vis
=
np
.
zeros
((
cfg
.
NUM_JOINTS
,
3
),
dtype
=
np
.
float
)
for
ipt
in
range
(
cfg
.
NUM_JOINTS
):
joints_3d
[
ipt
,
0
]
=
obj
[
'keypoints'
][
ipt
*
3
+
0
]
joints_3d
[
ipt
,
1
]
=
obj
[
'keypoints'
][
ipt
*
3
+
1
]
joints_3d
[
ipt
,
2
]
=
0
t_vis
=
obj
[
'keypoints'
][
ipt
*
3
+
2
]
if
t_vis
>
1
:
t_vis
=
1
joints_3d_vis
[
ipt
,
0
]
=
t_vis
joints_3d_vis
[
ipt
,
1
]
=
t_vis
joints_3d_vis
[
ipt
,
2
]
=
0
center
,
scale
=
_box2cs
(
obj
[
'clean_bbox'
][:
4
])
rec
.
append
({
'image'
:
os
.
path
.
join
(
cfg
.
DATAROOT
,
cfg
.
IMAGEDIR
,
image_set
+
'2017'
,
'%012d.jpg'
%
index
),
'center'
:
center
,
'scale'
:
scale
,
'joints_3d'
:
joints_3d
,
'joints_3d_vis'
:
joints_3d_vis
,
'filename'
:
'%012d.jpg'
%
index
,
'imgnum'
:
0
,
})
gt_db
.
extend
(
rec
)
return
gt_db
def
data_augmentation
(
sample
,
is_train
):
image_file
=
sample
[
'image'
]
filename
=
sample
[
'filename'
]
if
'filename'
in
sample
else
''
joints
=
sample
[
'joints_3d'
]
joints_vis
=
sample
[
'joints_3d_vis'
]
c
=
sample
[
'center'
]
s
=
sample
[
'scale'
]
# score = sample['score'] if 'score' in sample else 1
# imgnum = sample['imgnum'] if 'imgnum' in sample else ''
r
=
0
data_numpy
=
cv2
.
imread
(
image_file
,
cv2
.
IMREAD_COLOR
|
cv2
.
IMREAD_IGNORE_ORIENTATION
)
if
is_train
:
sf
=
cfg
.
SCALE_FACTOR
rf
=
cfg
.
ROT_FACTOR
s
=
s
*
np
.
clip
(
np
.
random
.
randn
()
*
sf
+
1
,
1
-
sf
,
1
+
sf
)
r
=
np
.
clip
(
np
.
random
.
randn
()
*
rf
,
-
rf
*
2
,
rf
*
2
)
\
if
random
.
random
()
<=
0.6
else
0
if
cfg
.
FLIP
and
random
.
random
()
<=
0.5
:
data_numpy
=
data_numpy
[:,
::
-
1
,
:]
joints
,
joints_vis
=
fliplr_joints
(
joints
,
joints_vis
,
data_numpy
.
shape
[
1
],
cfg
.
FLIP_PAIRS
)
c
[
0
]
=
data_numpy
.
shape
[
1
]
-
c
[
0
]
-
1
trans
=
get_affine_transform
(
c
,
s
,
r
,
cfg
.
IMAGE_SIZE
)
input
=
cv2
.
warpAffine
(
data_numpy
,
trans
,
(
int
(
cfg
.
IMAGE_SIZE
[
0
]),
int
(
cfg
.
IMAGE_SIZE
[
1
])),
flags
=
cv2
.
INTER_LINEAR
)
for
i
in
range
(
cfg
.
NUM_JOINTS
):
if
joints_vis
[
i
,
0
]
>
0.0
:
joints
[
i
,
0
:
2
]
=
affine_transform
(
joints
[
i
,
0
:
2
],
trans
)
# Numpy target
target
,
target_weight
=
generate_target
(
cfg
,
joints
,
joints_vis
)
if
cfg
.
DEBUG
:
visualize
(
cfg
,
filename
,
data_numpy
,
input
.
copy
(),
joints
,
target
)
# Normalization
input
=
input
.
astype
(
'float32'
).
transpose
((
2
,
0
,
1
))
/
255
input
-=
np
.
array
(
cfg
.
MEAN
).
reshape
((
3
,
1
,
1
))
input
/=
np
.
array
(
cfg
.
STD
).
reshape
((
3
,
1
,
1
))
if
is_train
:
return
input
,
target
,
target_weight
else
:
return
input
,
target
,
target_weight
# Create a reader
def
_reader_creator
(
root
,
image_set
,
shuffle
=
False
,
is_train
=
False
,
use_gt_bbox
=
False
):
def
reader
():
if
image_set
in
[
'train'
,
'val'
]:
file_name
=
os
.
path
.
join
(
root
,
'annotations'
,
'person_keypoints_'
+
image_set
+
'2017.json'
)
elif
image_set
in
[
'test'
,
'test-dev'
]:
file_name
=
os
.
path
.
join
(
root
,
'annotations'
,
'image_info_'
+
image_set
+
'2017.json'
)
else
:
raise
ValueError
(
"The dataset '{}' is not supported"
.
format
(
image_set
))
# Load annotations
coco
=
COCO
(
file_name
)
# Deal with class names
cats
=
[
cat
[
'name'
]
for
cat
in
coco
.
loadCats
(
coco
.
getCatIds
())]
classes
=
[
'__background__'
]
+
cats
print
(
'=> classes: {}'
.
format
(
classes
))
num_classes
=
len
(
classes
)
_class_to_ind
=
dict
(
zip
(
classes
,
range
(
num_classes
)))
_class_to_coco_ind
=
dict
(
zip
(
cats
,
coco
.
getCatIds
()))
_coco_ind_to_class_ind
=
dict
([(
_class_to_coco_ind
[
cls
],
_class_to_ind
[
cls
])
for
cls
in
classes
[
1
:]])
# Load image file names
image_set_index
=
coco
.
getImgIds
()
num_images
=
len
(
image_set_index
)
print
(
'=> num_images: {}'
.
format
(
num_images
))
if
is_train
or
use_gt_bbox
:
gt_db
=
_load_coco_keypoint_annotation
(
image_set_index
,
coco
,
_coco_ind_to_class_ind
,
image_set
)
gt_db
=
_select_data
(
gt_db
)
if
shuffle
:
random
.
shuffle
(
gt_db
)
for
db
in
gt_db
:
yield
db
mapper
=
functools
.
partial
(
data_augmentation
,
is_train
=
is_train
)
return
reader
,
mapper
def
train
():
reader
,
mapper
=
_reader_creator
(
cfg
.
DATAROOT
,
'train'
,
shuffle
=
True
,
is_train
=
True
)
def
pop
():
for
i
,
x
in
enumerate
(
reader
()):
yield
mapper
(
x
)
return
pop
def
train_ce
():
reader
,
mapper
=
_reader_creator
(
cfg
.
DATAROOT
,
'train'
,
use_gt_bbox
=
True
)
def
pop
():
for
i
,
x
in
enumerate
(
reader
()):
yield
mapper
(
x
)
return
pop
def
valid
():
reader
,
mapper
=
_reader_creator
(
cfg
.
DATAROOT
,
'val'
,
shuffle
=
False
,
is_train
=
False
)
def
pop
():
for
i
,
x
in
enumerate
(
reader
()):
yield
mapper
(
x
)
return
pop
fluid/PaddleCV/human_pose_estimation/train.py
浏览文件 @
35b8511e
...
...
@@ -17,6 +17,7 @@
import
os
import
numpy
as
np
import
time
import
cv2
import
paddle
import
paddle.fluid
as
fluid
...
...
@@ -42,6 +43,8 @@ add_arg('pretrained_model', str, None, "Whether to use pretrai
add_arg
(
'checkpoint'
,
str
,
None
,
"Whether to resume checkpoint."
)
add_arg
(
'lr'
,
float
,
0.001
,
"Set learning rate."
)
add_arg
(
'lr_strategy'
,
str
,
"piecewise_decay"
,
"Set the learning rate decay strategy."
)
parser
.
add_argument
(
'--enable_ce'
,
action
=
'store_true'
,
help
=
'If set, run the task with continuous evaluation logs.'
)
parser
.
add_argument
(
'--batch_num'
,
type
=
int
,
help
=
"batch num for ce"
)
# yapf: enable
def
optimizer_setting
(
args
,
params
):
...
...
@@ -93,6 +96,11 @@ def train(args):
print_arguments
(
args
)
if
args
.
enable_ce
:
SEED
=
102
fluid
.
default_main_program
().
random_seed
=
SEED
fluid
.
default_startup_program
().
random_seed
=
SEED
# Image and target
image
=
layers
.
data
(
name
=
'image'
,
shape
=
[
3
,
IMAGE_SIZE
[
1
],
IMAGE_SIZE
[
0
]],
dtype
=
'float32'
)
target
=
layers
.
data
(
name
=
'target'
,
shape
=
[
args
.
kp_dim
,
HEATMAP_SIZE
[
1
],
HEATMAP_SIZE
[
0
]],
dtype
=
'float32'
)
...
...
@@ -137,14 +145,23 @@ def train(args):
# Dataloader
train_reader
=
paddle
.
batch
(
reader
.
train
(),
batch_size
=
args
.
batch_size
)
if
args
.
enable_ce
:
import
lib.coco_reader_ce
as
reader_ce
train_reader
=
paddle
.
batch
(
reader_ce
.
train_ce
(),
batch_size
=
args
.
batch_size
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
image
,
target
,
target_weight
])
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
if
args
.
use_gpu
else
False
,
loss_name
=
loss
.
name
)
fetch_list
=
[
image
.
name
,
loss
.
name
,
output
.
name
]
total_time
=
0
last_loss
=
0
for
pass_id
in
range
(
params
[
"num_epochs"
]):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
args
.
enable_ce
and
args
.
batch_num
is
not
None
:
if
batch_id
>=
args
.
batch_num
:
break
start_time
=
time
.
time
()
current_lr
=
np
.
array
(
paddle
.
fluid
.
global_scope
().
find_var
(
'learning_rate'
).
get_tensor
())
input_image
,
loss
,
out_heatmaps
=
train_exe
.
run
(
...
...
@@ -152,6 +169,10 @@ def train(args):
loss
=
np
.
mean
(
np
.
array
(
loss
))
end_time
=
time
.
time
()
total_time
+=
end_time
-
start_time
last_loss
=
loss
print
(
'Epoch [{:4d}/{:3d}] LR: {:.10f} '
'Loss = {:.5f}'
.
format
(
batch_id
,
pass_id
,
current_lr
[
0
],
loss
))
...
...
@@ -159,11 +180,29 @@ def train(args):
if
batch_id
%
10
==
0
:
save_batch_heatmaps
(
input_image
,
out_heatmaps
,
file_name
=
'visualization@train.jpg'
,
normalize
=
True
)
model_path
=
os
.
path
.
join
(
args
.
model_save_dir
+
'/'
+
'simplebase-{}'
.
format
(
args
.
dataset
),
str
(
pass_id
))
if
not
os
.
path
.
isdir
(
model_path
):
os
.
makedirs
(
model_path
)
fluid
.
io
.
save_persistables
(
exe
,
model_path
)
# only for ce
if
args
.
enable_ce
:
epoch_idx
=
params
[
"num_epochs"
]
gpu_num
=
get_cards
(
args
)
print
(
"kpis
\t
each_pass_duration_card%s
\t
%s"
%
(
gpu_num
,
total_time
/
epoch_idx
))
print
(
"kpis
\t
train_loss_card%s
\t
%s"
%
(
gpu_num
,
last_loss
))
def
get_cards
(
args
):
if
args
.
enable_ce
:
cards
=
os
.
environ
.
get
(
'CUDA_VISIBLE_DEVICES'
)
num
=
len
(
cards
.
split
(
","
))
return
num
else
:
return
args
.
num_devices
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录