Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
33e68ab4
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
33e68ab4
编写于
11月 05, 2018
作者:
F
frankwhzhang
提交者:
Yi Liu
11月 05, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add train multiple negative and infer (#1422)
* fix readme2.0 * add tagspace infer
上级
e8160b1c
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
125 addition
and
28 deletion
+125
-28
fluid/PaddleRec/gru4rec/README.md
fluid/PaddleRec/gru4rec/README.md
+1
-1
fluid/PaddleRec/tagspace/README.md
fluid/PaddleRec/tagspace/README.md
+5
-6
fluid/PaddleRec/tagspace/infer.py
fluid/PaddleRec/tagspace/infer.py
+77
-0
fluid/PaddleRec/tagspace/small_test.txt
fluid/PaddleRec/tagspace/small_test.txt
+0
-0
fluid/PaddleRec/tagspace/small_train.txt
fluid/PaddleRec/tagspace/small_train.txt
+0
-0
fluid/PaddleRec/tagspace/train.py
fluid/PaddleRec/tagspace/train.py
+15
-13
fluid/PaddleRec/tagspace/utils.py
fluid/PaddleRec/tagspace/utils.py
+27
-8
未找到文件。
fluid/PaddleRec/gru4rec/README.md
浏览文件 @
33e68ab4
...
...
@@ -21,7 +21,7 @@ GRU4REC模型的介绍可以参阅论文[Session-based Recommendations with Recu
论文的贡献在于首次将RNN(GRU)运用于session-based推荐,相比传统的KNN和矩阵分解,效果有明显的提升。
论文的核心思想
史
在一个session中,用户点击一系列item的行为看做一个序列,用来训练RNN模型。预测阶段,给定已知的点击序列作为输入,预测下一个可能点击的item。
论文的核心思想
是
在一个session中,用户点击一系列item的行为看做一个序列,用来训练RNN模型。预测阶段,给定已知的点击序列作为输入,预测下一个可能点击的item。
session-based推荐应用场景非常广泛,比如用户的商品浏览、新闻点击、地点签到等序列数据。
...
...
fluid/PaddleRec/
TagS
pace/README.md
→
fluid/PaddleRec/
tags
pace/README.md
浏览文件 @
33e68ab4
...
...
@@ -6,6 +6,7 @@
.
├── README.md # 文档
├── train.py # 训练脚本
├── infer.py # 预测脚本
├── utils # 通用函数
├── small_train.txt # 小样本训练集
└── small_test.txt # 小样本测试集
...
...
@@ -26,7 +27,6 @@ TagSpace模型的介绍可以参阅论文[#TagSpace: Semantic Embeddings from Ha
"3","Wall St. Bears Claw Back Into the Black (Reuters)","Reuters - Short-sellers, Wall Street's dwindling\band of ultra-cynics, are seeing green again."
```
## 训练
'--use_cuda 1' 表示使用gpu, 缺省表示使用cpu
...
...
@@ -41,10 +41,9 @@ CPU 环境
python train.py small_train.txt small_test.txt
```
## 未来工作
添加预测部分
添加多种负例采样方式
## 预测
```
CUDA_VISIBLE_DEVICES=0 python infer.py model/ 1 10 small_train.txt small_test.txt --use_cuda 1
```
fluid/PaddleRec/tagspace/infer.py
0 → 100644
浏览文件 @
33e68ab4
import
sys
import
time
import
math
import
unittest
import
contextlib
import
numpy
as
np
import
six
import
paddle.fluid
as
fluid
import
paddle
import
utils
def
infer
(
test_reader
,
vocab_tag
,
use_cuda
,
model_path
):
""" inference function """
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
with
fluid
.
scope_guard
(
fluid
.
core
.
Scope
()):
infer_program
,
feed_target_names
,
fetch_vars
=
fluid
.
io
.
load_inference_model
(
model_path
,
exe
)
t0
=
time
.
time
()
step_id
=
0
true_num
=
0
all_num
=
0
size
=
len
(
vocab_tag
)
value
=
[]
for
data
in
test_reader
():
step_id
+=
1
lod_text_seq
=
utils
.
to_lodtensor
([
dat
[
0
]
for
dat
in
data
],
place
)
lod_tag
=
utils
.
to_lodtensor
([
dat
[
1
]
for
dat
in
data
],
place
)
lod_pos_tag
=
utils
.
to_lodtensor
([
dat
[
2
]
for
dat
in
data
],
place
)
para
=
exe
.
run
(
infer_program
,
feed
=
{
"text"
:
lod_text_seq
,
"pos_tag"
:
lod_tag
},
fetch_list
=
fetch_vars
,
return_numpy
=
False
)
value
.
append
(
para
[
0
].
_get_float_element
(
0
))
if
step_id
%
size
==
0
and
step_id
>
1
:
all_num
+=
1
true_pos
=
[
dat
[
2
]
for
dat
in
data
][
0
][
0
]
if
value
.
index
(
max
(
value
))
==
int
(
true_pos
):
true_num
+=
1
value
=
[]
if
step_id
%
1000
==
0
:
print
(
step_id
,
1.0
*
true_num
/
all_num
)
t1
=
time
.
time
()
if
__name__
==
"__main__"
:
if
len
(
sys
.
argv
)
!=
6
:
print
(
"Usage: %s model_dir start_epoch last_epoch(inclusive) train_file test_file"
)
exit
(
0
)
train_file
=
""
test_file
=
""
model_dir
=
sys
.
argv
[
1
]
try
:
start_index
=
int
(
sys
.
argv
[
2
])
last_index
=
int
(
sys
.
argv
[
3
])
train_file
=
sys
.
argv
[
4
]
test_file
=
sys
.
argv
[
5
]
except
:
print
(
"Usage: %s model_dir start_ipoch last_epoch(inclusive) train_file test_file"
)
exit
(
-
1
)
vocab_text
,
vocab_tag
,
train_reader
,
test_reader
=
utils
.
prepare_data
(
train_file
,
test_file
,
batch_size
=
1
,
buffer_size
=
1000
,
word_freq_threshold
=
0
)
for
epoch
in
xrange
(
start_index
,
last_index
+
1
):
epoch_path
=
model_dir
+
"/epoch_"
+
str
(
epoch
)
infer
(
test_reader
=
test_reader
,
vocab_tag
=
vocab_tag
,
use_cuda
=
False
,
model_path
=
epoch_path
)
fluid/PaddleRec/
TagS
pace/small_test.txt
→
fluid/PaddleRec/
tags
pace/small_test.txt
浏览文件 @
33e68ab4
文件已移动
fluid/PaddleRec/
TagS
pace/small_train.txt
→
fluid/PaddleRec/
tags
pace/small_train.txt
浏览文件 @
33e68ab4
文件已移动
fluid/PaddleRec/
TagS
pace/train.py
→
fluid/PaddleRec/
tags
pace/train.py
浏览文件 @
33e68ab4
...
...
@@ -24,7 +24,7 @@ def parse_args():
args
=
parser
.
parse_args
()
return
args
def
network
(
vocab_text_size
,
vocab_tag_size
,
emb_dim
=
10
,
hid_dim
=
1000
,
win_size
=
5
,
margin
=
0.1
):
def
network
(
vocab_text_size
,
vocab_tag_size
,
emb_dim
=
10
,
hid_dim
=
1000
,
win_size
=
5
,
margin
=
0.1
,
neg_size
=
5
):
""" network definition """
text
=
io
.
data
(
name
=
"text"
,
shape
=
[
1
],
lod_level
=
1
,
dtype
=
'int64'
)
pos_tag
=
io
.
data
(
name
=
"pos_tag"
,
shape
=
[
1
],
lod_level
=
1
,
dtype
=
'int64'
)
...
...
@@ -44,12 +44,14 @@ def network(vocab_text_size, vocab_tag_size, emb_dim=10, hid_dim=1000, win_size=
act
=
"tanh"
,
pool_type
=
"max"
,
param_attr
=
"cnn"
)
text_hid
=
fluid
.
layers
.
fc
(
input
=
conv_1d
,
size
=
emb_dim
,
param_attr
=
"text_hid"
)
cos_pos
=
nn
.
cos_sim
(
pos_tag_emb
,
text_hid
)
cos_neg
=
nn
.
cos_sim
(
neg_tag_emb
,
text_hid
)
mul_text_hid
=
fluid
.
layers
.
sequence_expand_as
(
x
=
text_hid
,
y
=
neg_tag_emb
)
mul_cos_neg
=
nn
.
cos_sim
(
neg_tag_emb
,
mul_text_hid
)
cos_neg_all
=
fluid
.
layers
.
sequence_reshape
(
input
=
mul_cos_neg
,
new_dim
=
neg_size
)
#choose max negtive cosine
cos_neg
=
nn
.
reduce_max
(
cos_neg_all
,
dim
=
1
,
keep_dim
=
True
)
#calculate hinge loss
loss_part1
=
nn
.
elementwise_sub
(
tensor
.
fill_constant_batch_size_like
(
input
=
cos_pos
,
...
...
@@ -63,22 +65,20 @@ def network(vocab_text_size, vocab_tag_size, emb_dim=10, hid_dim=1000, win_size=
input
=
loss_part2
,
shape
=
[
-
1
,
1
],
value
=
0.0
,
dtype
=
'float32'
),
loss_part2
)
avg_cost
=
nn
.
mean
(
loss_part3
)
less
=
tensor
.
cast
(
cf
.
less_than
(
cos_neg
,
cos_pos
),
dtype
=
'float32'
)
correct
=
nn
.
reduce_sum
(
less
)
return
text
,
pos_tag
,
neg_tag
,
avg_cost
,
correct
,
cos_pos
def
train
(
train_reader
,
vocab_text
,
vocab_tag
,
base_lr
,
batch_size
,
def
train
(
train_reader
,
vocab_text
,
vocab_tag
,
base_lr
,
batch_size
,
neg_size
,
pass_num
,
use_cuda
,
model_dir
):
""" train network """
args
=
parse_args
()
vocab_text_size
=
len
(
vocab_text
)
vocab_tag_size
=
len
(
vocab_tag
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
# Train program
text
,
pos_tag
,
neg_tag
,
avg_cost
,
correct
,
pos_cos
=
network
(
vocab_text_size
,
vocab_ta
g_size
)
text
,
pos_tag
,
neg_tag
,
avg_cost
,
correct
,
cos_pos
=
network
(
vocab_text_size
,
vocab_tag_size
,
neg_size
=
ne
g_size
)
# Optimization to minimize lost
sgd_optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
base_lr
)
...
...
@@ -117,8 +117,8 @@ def train(train_reader, vocab_text, vocab_tag, base_lr, batch_size,
(
epoch_idx
,
batch_id
,
total_time
/
epoch_idx
))
save_dir
=
"%s/epoch_%d"
%
(
model_dir
,
epoch_idx
)
feed_var_names
=
[
"text"
,
"pos_tag"
]
fetch_vars
=
[
pos_c
os
]
fluid
.
io
.
save_inference_model
(
save_dir
,
feed_var_names
,
fetch_vars
,
exe
)
fetch_vars
=
[
cos_p
os
]
fluid
.
io
.
save_inference_model
(
save_dir
,
feed_var_names
,
fetch_vars
,
exe
)
print
(
"finish training"
)
def
train_net
():
...
...
@@ -128,17 +128,19 @@ def train_net():
test_file
=
args
.
test_file
use_cuda
=
True
if
args
.
use_cuda
else
False
batch_size
=
100
neg_size
=
3
vocab_text
,
vocab_tag
,
train_reader
,
test_reader
=
utils
.
prepare_data
(
train_file
,
test_file
,
batch_size
=
batch_size
,
buffer_size
=
batch_size
*
100
,
word_freq_threshold
=
0
)
train_file
,
test_file
,
neg_size
=
neg_size
,
batch_size
=
batch_size
,
buffer_size
=
batch_size
*
100
,
word_freq_threshold
=
0
)
train
(
train_reader
=
train_reader
,
vocab_text
=
vocab_text
,
vocab_tag
=
vocab_tag
,
base_lr
=
0.01
,
batch_size
=
batch_size
,
neg_size
=
neg_size
,
pass_num
=
10
,
use_cuda
=
use_cuda
,
model_dir
=
"model
_dim10_2
"
)
model_dir
=
"model"
)
if
__name__
==
"__main__"
:
...
...
fluid/PaddleRec/
TagS
pace/utils.py
→
fluid/PaddleRec/
tags
pace/utils.py
浏览文件 @
33e68ab4
...
...
@@ -38,12 +38,13 @@ def prepare_data(train_filename,
train_reader
=
sort_batch
(
paddle
.
reader
.
shuffle
(
train
(
train_filename
,
vocab_text
,
vocab_tag
,
buffer_size
,
data_type
=
DataType
.
SEQ
),
train_filename
,
vocab_text
,
vocab_tag
,
neg_size
,
buffer_size
,
data_type
=
DataType
.
SEQ
),
buf_size
=
buffer_size
),
batch_size
,
batch_size
*
20
)
test_reader
=
sort_batch
(
test
(
test_filename
,
vocab_text
,
vocab_tag
,
buffer_size
,
data_type
=
DataType
.
SEQ
),
test_filename
,
vocab_text
,
vocab_tag
,
neg_size
,
buffer_size
,
data_type
=
DataType
.
SEQ
),
batch_size
,
batch_size
*
20
)
return
vocab_text
,
vocab_tag
,
train_reader
,
test_reader
...
...
@@ -123,7 +124,7 @@ def build_dict(column_num=2, min_word_freq=50, train_filename="", test_filename=
word_idx
=
dict
(
list
(
zip
(
words
,
six
.
moves
.
range
(
len
(
words
)))))
return
word_idx
def
reader_creator
(
filename
,
text_idx
,
tag_idx
,
n
,
data_type
):
def
train_reader_creator
(
filename
,
text_idx
,
tag_idx
,
neg_size
,
n
,
data_type
):
def
reader
():
with
open
(
filename
)
as
input_file
:
data_file
=
csv
.
reader
(
input_file
)
...
...
@@ -138,7 +139,7 @@ def reader_creator(filename, text_idx, tag_idx, n, data_type):
max_iter
=
100
now_iter
=
0
sum_n
=
0
while
(
sum_n
<
1
)
:
while
(
sum_n
<
neg_size
)
:
now_iter
+=
1
if
now_iter
>
max_iter
:
print
(
"error : only one class"
)
...
...
@@ -152,8 +153,26 @@ def reader_creator(filename, text_idx, tag_idx, n, data_type):
yield
text
,
pos_tag
,
neg_tag
return
reader
def
train
(
filename
,
text_idx
,
tag_idx
,
n
,
data_type
=
DataType
.
SEQ
):
return
reader_creator
(
filename
,
text_idx
,
tag_idx
,
n
,
data_type
)
def
test_reader_creator
(
filename
,
text_idx
,
tag_idx
,
n
,
data_type
):
def
reader
():
with
open
(
filename
)
as
input_file
:
data_file
=
csv
.
reader
(
input_file
)
for
row
in
data_file
:
text_raw
=
re
.
split
(
r
'\W+'
,
row
[
2
].
strip
())
text
=
[
text_idx
.
get
(
w
)
for
w
in
text_raw
]
tag_raw
=
re
.
split
(
r
'\W+'
,
row
[
0
].
strip
())
pos_index
=
tag_idx
.
get
(
tag_raw
[
0
])
pos_tag
=
[]
pos_tag
.
append
(
pos_index
)
for
ii
in
range
(
len
(
tag_idx
)):
tag
=
[]
tag
.
append
(
ii
)
yield
text
,
tag
,
pos_tag
return
reader
def
train
(
filename
,
text_idx
,
tag_idx
,
neg_size
,
n
,
data_type
=
DataType
.
SEQ
):
return
train_reader_creator
(
filename
,
text_idx
,
tag_idx
,
neg_size
,
n
,
data_type
)
def
test
(
filename
,
text_idx
,
tag_idx
,
n
,
data_type
=
DataType
.
SEQ
):
return
reader_creator
(
filename
,
text_idx
,
tag_idx
,
n
,
data_type
)
def
test
(
filename
,
text_idx
,
tag_idx
,
n
eg_size
,
n
,
data_type
=
DataType
.
SEQ
):
return
test_
reader_creator
(
filename
,
text_idx
,
tag_idx
,
n
,
data_type
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录