Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
3238bdba
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3238bdba
编写于
11月 06, 2020
作者:
C
cuicheng01
提交者:
GitHub
11月 06, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add InceptionV3 architecture (#4937)
* Create inception_v3.py * Update __init__.py * Create InceptionV3.sh
上级
0a4c9c8e
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
386 addition
and
0 deletion
+386
-0
PaddleCV/image_classification/models/__init__.py
PaddleCV/image_classification/models/__init__.py
+1
-0
PaddleCV/image_classification/models/inception_v3.py
PaddleCV/image_classification/models/inception_v3.py
+366
-0
PaddleCV/image_classification/scripts/train/InceptionV3.sh
PaddleCV/image_classification/scripts/train/InceptionV3.sh
+19
-0
未找到文件。
PaddleCV/image_classification/models/__init__.py
浏览文件 @
3238bdba
...
...
@@ -23,6 +23,7 @@ from .resnet_vc import ResNet50_vc, ResNet101_vc, ResNet152_vc
from
.resnet_vd
import
ResNet18_vd
,
ResNet34_vd
,
ResNet50_vd
,
ResNet101_vd
,
ResNet152_vd
,
ResNet200_vd
from
.resnext
import
ResNeXt50_64x4d
,
ResNeXt101_64x4d
,
ResNeXt152_64x4d
,
ResNeXt50_32x4d
,
ResNeXt101_32x4d
,
ResNeXt152_32x4d
from
.resnext_vd
import
ResNeXt50_vd_64x4d
,
ResNeXt101_vd_64x4d
,
ResNeXt152_vd_64x4d
,
ResNeXt50_vd_32x4d
,
ResNeXt101_vd_32x4d
,
ResNeXt152_vd_32x4d
from
.inception_v3
import
InceptionV3
from
.inception_v4
import
InceptionV4
from
.se_resnet_vd
import
SE_ResNet18_vd
,
SE_ResNet34_vd
,
SE_ResNet50_vd
,
SE_ResNet101_vd
,
SE_ResNet152_vd
,
SE_ResNet200_vd
from
.se_resnext
import
SE_ResNeXt50_32x4d
,
SE_ResNeXt101_32x4d
,
SE_ResNeXt152_32x4d
...
...
PaddleCV/image_classification/models/inception_v3.py
0 → 100644
浏览文件 @
3238bdba
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
import
math
from
paddle.fluid.param_attr
import
ParamAttr
__all__
=
[
"InceptionV3"
]
class
InceptionV3
():
def
__init__
(
self
):
self
.
inception_a_list
=
[
32
,
64
,
64
]
self
.
inception_c_list
=
[
128
,
160
,
160
,
192
]
def
net
(
self
,
input
,
class_dim
=
1000
):
x
=
self
.
inception_stem
(
input
)
for
i
,
pool_features
in
enumerate
(
self
.
inception_a_list
):
x
=
self
.
inceptionA
(
x
,
pool_features
,
name
=
str
(
i
+
1
))
x
=
self
.
inceptionB
(
x
,
name
=
"1"
)
for
i
,
channels_7x7
in
enumerate
(
self
.
inception_c_list
):
x
=
self
.
inceptionC
(
x
,
channels_7x7
,
name
=
str
(
i
+
1
))
x
=
self
.
inceptionD
(
x
,
name
=
"1"
)
x
=
self
.
inceptionE
(
x
,
name
=
"1"
)
x
=
self
.
inceptionE
(
x
,
name
=
"2"
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
x
,
pool_type
=
"avg"
,
global_pooling
=
True
)
drop
=
fluid
.
layers
.
dropout
(
x
=
pool
,
dropout_prob
=
0.2
)
stdv
=
1.0
/
math
.
sqrt
(
drop
.
shape
[
1
]
*
1.0
)
out
=
fluid
.
layers
.
fc
(
input
=
drop
,
size
=
class_dim
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
"fc_weights"
),
bias_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
"fc_offset"
))
return
out
def
conv_bn_layer
(
self
,
data
,
num_filters
,
filter_size
,
stride
=
1
,
padding
=
0
,
groups
=
1
,
act
=
"relu"
,
name
=
None
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
data
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
,
name
=
name
)
return
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
name
+
"_bn_scale"
),
bias_attr
=
ParamAttr
(
name
=
name
+
"_bn_offset"
),
moving_mean_name
=
name
+
"_bn_mean"
,
moving_variance_name
=
name
+
"_bn_variance"
)
def
inception_stem
(
self
,
x
):
x
=
self
.
conv_bn_layer
(
x
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
2
,
act
=
"relu"
,
name
=
"conv_1a_3x3"
)
x
=
self
.
conv_bn_layer
(
x
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
1
,
act
=
"relu"
,
name
=
"conv_2a_3x3"
)
x
=
self
.
conv_bn_layer
(
x
,
num_filters
=
64
,
filter_size
=
3
,
padding
=
1
,
act
=
"relu"
,
name
=
"conv_2b_3x3"
)
x
=
fluid
.
layers
.
pool2d
(
input
=
x
,
pool_size
=
3
,
pool_stride
=
2
,
pool_type
=
"max"
)
x
=
self
.
conv_bn_layer
(
x
,
num_filters
=
80
,
filter_size
=
1
,
act
=
"relu"
,
name
=
"conv_3b_1x1"
)
x
=
self
.
conv_bn_layer
(
x
,
num_filters
=
192
,
filter_size
=
3
,
act
=
"relu"
,
name
=
"conv_4a_3x3"
)
x
=
fluid
.
layers
.
pool2d
(
input
=
x
,
pool_size
=
3
,
pool_stride
=
2
,
pool_type
=
"max"
)
return
x
def
inceptionA
(
self
,
x
,
pool_features
,
name
=
None
):
branch1x1
=
self
.
conv_bn_layer
(
x
,
num_filters
=
64
,
filter_size
=
1
,
act
=
"relu"
,
name
=
"inception_a_branch1x1_"
+
name
)
branch5x5
=
self
.
conv_bn_layer
(
x
,
num_filters
=
48
,
filter_size
=
1
,
act
=
"relu"
,
name
=
"inception_a_branch5x5_1_"
+
name
)
branch5x5
=
self
.
conv_bn_layer
(
branch5x5
,
num_filters
=
64
,
filter_size
=
5
,
padding
=
2
,
act
=
"relu"
,
name
=
"inception_a_branch5x5_2_"
+
name
)
branch3x3dbl
=
self
.
conv_bn_layer
(
x
,
num_filters
=
64
,
filter_size
=
1
,
act
=
"relu"
,
name
=
"inception_a_branch3x3dbl_1_"
+
name
)
branch3x3dbl
=
self
.
conv_bn_layer
(
branch3x3dbl
,
num_filters
=
96
,
filter_size
=
3
,
padding
=
1
,
act
=
"relu"
,
name
=
"inception_a_branch3x3dbl_2_"
+
name
)
branch3x3dbl
=
self
.
conv_bn_layer
(
branch3x3dbl
,
num_filters
=
96
,
filter_size
=
3
,
padding
=
1
,
act
=
"relu"
,
name
=
"inception_a_branch3x3dbl_3_"
+
name
)
branch_pool
=
fluid
.
layers
.
pool2d
(
x
,
pool_size
=
3
,
pool_padding
=
1
,
pool_type
=
"avg"
)
branch_pool
=
self
.
conv_bn_layer
(
branch_pool
,
num_filters
=
pool_features
,
filter_size
=
1
,
act
=
"relu"
,
name
=
"inception_a_branch_pool_"
+
name
)
concat
=
fluid
.
layers
.
concat
([
branch1x1
,
branch5x5
,
branch3x3dbl
,
branch_pool
],
axis
=
1
)
return
concat
def
inceptionB
(
self
,
x
,
name
=
None
):
branch3x3
=
self
.
conv_bn_layer
(
x
,
num_filters
=
384
,
filter_size
=
3
,
stride
=
2
,
act
=
"relu"
,
name
=
"inception_b_branch3x3_"
+
name
)
branch3x3dbl
=
self
.
conv_bn_layer
(
x
,
num_filters
=
64
,
filter_size
=
1
,
act
=
"relu"
,
name
=
"inception_b_branch3x3dbl_1_"
+
name
)
branch3x3dbl
=
self
.
conv_bn_layer
(
branch3x3dbl
,
num_filters
=
96
,
filter_size
=
3
,
padding
=
1
,
act
=
"relu"
,
name
=
"inception_b_branch3x3dbl_2_"
+
name
)
branch3x3dbl
=
self
.
conv_bn_layer
(
branch3x3dbl
,
num_filters
=
96
,
filter_size
=
3
,
stride
=
2
,
act
=
"relu"
,
name
=
"inception_b_branch3x3dbl_3_"
+
name
)
branch_pool
=
fluid
.
layers
.
pool2d
(
x
,
pool_size
=
3
,
pool_stride
=
2
,
pool_type
=
"max"
)
concat
=
fluid
.
layers
.
concat
([
branch3x3
,
branch3x3dbl
,
branch_pool
],
axis
=
1
)
return
concat
def
inceptionC
(
self
,
x
,
channels_7x7
,
name
=
None
):
branch1x1
=
self
.
conv_bn_layer
(
x
,
num_filters
=
192
,
filter_size
=
1
,
act
=
"relu"
,
name
=
"inception_c_branch1x1_"
+
name
)
branch7x7
=
self
.
conv_bn_layer
(
x
,
num_filters
=
channels_7x7
,
filter_size
=
1
,
stride
=
1
,
act
=
"relu"
,
name
=
"inception_c_branch7x7_1_"
+
name
)
branch7x7
=
self
.
conv_bn_layer
(
branch7x7
,
num_filters
=
channels_7x7
,
filter_size
=
(
1
,
7
),
stride
=
1
,
padding
=
(
0
,
3
),
act
=
"relu"
,
name
=
"inception_c_branch7x7_2_"
+
name
)
branch7x7
=
self
.
conv_bn_layer
(
branch7x7
,
num_filters
=
192
,
filter_size
=
(
7
,
1
),
stride
=
1
,
padding
=
(
3
,
0
),
act
=
"relu"
,
name
=
"inception_c_branch7x7_3_"
+
name
)
branch7x7dbl
=
self
.
conv_bn_layer
(
x
,
num_filters
=
channels_7x7
,
filter_size
=
1
,
act
=
"relu"
,
name
=
"inception_c_branch7x7dbl_1_"
+
name
)
branch7x7dbl
=
self
.
conv_bn_layer
(
branch7x7dbl
,
num_filters
=
channels_7x7
,
filter_size
=
(
7
,
1
),
padding
=
(
3
,
0
),
act
=
"relu"
,
name
=
"inception_c_branch7x7dbl_2_"
+
name
)
branch7x7dbl
=
self
.
conv_bn_layer
(
branch7x7dbl
,
num_filters
=
channels_7x7
,
filter_size
=
(
1
,
7
),
padding
=
(
0
,
3
),
act
=
"relu"
,
name
=
"inception_c_branch7x7dbl_3_"
+
name
)
branch7x7dbl
=
self
.
conv_bn_layer
(
branch7x7dbl
,
num_filters
=
channels_7x7
,
filter_size
=
(
7
,
1
),
padding
=
(
3
,
0
),
act
=
"relu"
,
name
=
"inception_c_branch7x7dbl_4_"
+
name
)
branch7x7dbl
=
self
.
conv_bn_layer
(
branch7x7dbl
,
num_filters
=
192
,
filter_size
=
(
1
,
7
),
padding
=
(
0
,
3
),
act
=
"relu"
,
name
=
"inception_c_branch7x7dbl_5_"
+
name
)
branch_pool
=
fluid
.
layers
.
pool2d
(
x
,
pool_size
=
3
,
pool_stride
=
1
,
pool_padding
=
1
,
pool_type
=
"avg"
)
branch_pool
=
self
.
conv_bn_layer
(
branch_pool
,
num_filters
=
192
,
filter_size
=
1
,
act
=
"relu"
,
name
=
"inception_c_branch_pool_"
+
name
)
concat
=
fluid
.
layers
.
concat
([
branch1x1
,
branch7x7
,
branch7x7dbl
,
branch_pool
],
axis
=
1
)
return
concat
def
inceptionD
(
self
,
x
,
name
=
None
):
branch3x3
=
self
.
conv_bn_layer
(
x
,
num_filters
=
192
,
filter_size
=
1
,
act
=
"relu"
,
name
=
"inception_d_branch3x3_1_"
+
name
)
branch3x3
=
self
.
conv_bn_layer
(
branch3x3
,
num_filters
=
320
,
filter_size
=
3
,
stride
=
2
,
act
=
"relu"
,
name
=
"inception_d_branch3x3_2_"
+
name
)
branch7x7x3
=
self
.
conv_bn_layer
(
x
,
num_filters
=
192
,
filter_size
=
1
,
act
=
"relu"
,
name
=
"inception_d_branch7x7x3_1_"
+
name
)
branch7x7x3
=
self
.
conv_bn_layer
(
branch7x7x3
,
num_filters
=
192
,
filter_size
=
(
1
,
7
),
padding
=
(
0
,
3
),
act
=
"relu"
,
name
=
"inception_d_branch7x7x3_2_"
+
name
)
branch7x7x3
=
self
.
conv_bn_layer
(
branch7x7x3
,
num_filters
=
192
,
filter_size
=
(
7
,
1
),
padding
=
(
3
,
0
),
act
=
"relu"
,
name
=
"inception_d_branch7x7x3_3_"
+
name
)
branch7x7x3
=
self
.
conv_bn_layer
(
branch7x7x3
,
num_filters
=
192
,
filter_size
=
3
,
stride
=
2
,
act
=
"relu"
,
name
=
"inception_d_branch7x7x3_4_"
+
name
)
branch_pool
=
fluid
.
layers
.
pool2d
(
x
,
pool_size
=
3
,
pool_stride
=
2
,
pool_type
=
"max"
)
concat
=
fluid
.
layers
.
concat
([
branch3x3
,
branch7x7x3
,
branch_pool
],
axis
=
1
)
return
concat
def
inceptionE
(
self
,
x
,
name
=
None
):
branch1x1
=
self
.
conv_bn_layer
(
x
,
num_filters
=
320
,
filter_size
=
1
,
act
=
"relu"
,
name
=
"inception_e_branch1x1_"
+
name
)
branch3x3
=
self
.
conv_bn_layer
(
x
,
num_filters
=
384
,
filter_size
=
1
,
act
=
"relu"
,
name
=
"inception_e_branch3x3_1_"
+
name
)
branch3x3_2a
=
self
.
conv_bn_layer
(
branch3x3
,
num_filters
=
384
,
filter_size
=
(
1
,
3
),
padding
=
(
0
,
1
),
act
=
"relu"
,
name
=
"inception_e_branch3x3_2a_"
+
name
)
branch3x3_2b
=
self
.
conv_bn_layer
(
branch3x3
,
num_filters
=
384
,
filter_size
=
(
3
,
1
),
padding
=
(
1
,
0
),
act
=
"relu"
,
name
=
"inception_e_branch3x3_2b_"
+
name
)
branch3x3
=
fluid
.
layers
.
concat
([
branch3x3_2a
,
branch3x3_2b
],
axis
=
1
)
branch3x3dbl
=
self
.
conv_bn_layer
(
x
,
num_filters
=
448
,
filter_size
=
1
,
act
=
"relu"
,
name
=
"inception_e_branch3x3dbl_1_"
+
name
)
branch3x3dbl
=
self
.
conv_bn_layer
(
branch3x3dbl
,
num_filters
=
384
,
filter_size
=
3
,
padding
=
1
,
act
=
"relu"
,
name
=
"inception_e_branch3x3dbl_2_"
+
name
)
branch3x3dbl_3a
=
self
.
conv_bn_layer
(
branch3x3dbl
,
num_filters
=
384
,
filter_size
=
(
1
,
3
),
padding
=
(
0
,
1
),
act
=
"relu"
,
name
=
"inception_e_branch3x3dbl_3a_"
+
name
)
branch3x3dbl_3b
=
self
.
conv_bn_layer
(
branch3x3dbl
,
num_filters
=
384
,
filter_size
=
(
3
,
1
),
padding
=
(
1
,
0
),
act
=
"relu"
,
name
=
"inception_e_branch3x3dbl_3b_"
+
name
)
branch3x3dbl
=
fluid
.
layers
.
concat
([
branch3x3dbl_3a
,
branch3x3dbl_3b
],
axis
=
1
)
branch_pool
=
fluid
.
layers
.
pool2d
(
x
,
pool_size
=
3
,
pool_stride
=
1
,
pool_padding
=
1
,
pool_type
=
"avg"
)
branch_pool
=
self
.
conv_bn_layer
(
branch_pool
,
num_filters
=
192
,
filter_size
=
1
,
act
=
"relu"
,
name
=
"inception_e_branch_pool_"
+
name
)
concat
=
fluid
.
layers
.
concat
([
branch1x1
,
branch3x3
,
branch3x3dbl
,
branch_pool
],
axis
=
1
)
return
concat
PaddleCV/image_classification/scripts/train/InceptionV3.sh
0 → 100644
浏览文件 @
3238bdba
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3,4,5,6,7
export
FLAGS_fast_eager_deletion_mode
=
1
export
FLAGS_eager_delete_tensor_gb
=
0.0
export
FLAGS_fraction_of_gpu_memory_to_use
=
0.98
#InceptionV3
python train.py
\
--model
=
InceptionV3
\
--batch_size
=
256
\
--image_shape
3 299 299
\
--lr_strategy
=
cosine_decay
\
--lr
=
0.045
\
--num_epochs
=
200
\
--model_save_dir
=
output/
\
--l2_decay
=
1e-4
\
--use_mixup
=
True
\
--resize_short_size
=
320
\
--use_label_smoothing
=
True
\
--label_smoothing_epsilon
=
0.1
\
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录