Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
3204a7f7
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3204a7f7
编写于
9月 27, 2018
作者:
G
gongweibao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix
上级
579be0c1
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
96 addition
and
28 deletion
+96
-28
fluid/neural_machine_translation/transformer/train.py
fluid/neural_machine_translation/transformer/train.py
+96
-28
未找到文件。
fluid/neural_machine_translation/transformer/train.py
浏览文件 @
3204a7f7
...
...
@@ -12,6 +12,8 @@ import reader
from
config
import
*
from
model
import
transformer
,
position_encoding_init
import
logging
import
sys
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
"Training for Transformer."
)
...
...
@@ -98,6 +100,11 @@ def parse_args():
default
=
'GPU'
,
choices
=
[
'CPU'
,
'GPU'
],
help
=
"The device type."
)
parser
.
add_argument
(
'--update_method'
,
choices
=
(
"pserver"
,
"nccl2"
),
default
=
"pserver"
,
help
=
'Update method.'
)
parser
.
add_argument
(
'--sync'
,
type
=
ast
.
literal_eval
,
default
=
True
,
help
=
"sync mode."
)
parser
.
add_argument
(
...
...
@@ -116,6 +123,12 @@ def parse_args():
type
=
ast
.
literal_eval
,
default
=
True
,
help
=
"The flag indicating whether to use py_reader."
)
parser
.
add_argument
(
"--fetch_steps"
,
type
=
int
,
default
=
100
,
help
=
"Fetch outputs steps."
)
args
=
parser
.
parse_args
()
# Append args related to dict
...
...
@@ -131,6 +144,26 @@ def parse_args():
[
TrainTaskConfig
,
ModelHyperParams
])
return
args
def
append_nccl2_prepare
(
trainer_id
,
worker_endpoints
,
current_endpoint
):
assert
(
trainer_id
>=
0
and
len
(
worker_endpoints
)
>
1
and
current_endpoint
in
worker_endpoints
)
eps
=
copy
.
deepcopy
(
worker_endpoints
)
eps
.
remove
(
current_endpoint
)
nccl_id_var
=
fluid
.
default_startup_program
().
global_block
().
create_var
(
name
=
"NCCLID"
,
persistable
=
True
,
type
=
fluid
.
core
.
VarDesc
.
VarType
.
RAW
)
fluid
.
default_startup_program
().
global_block
().
append_op
(
type
=
"gen_nccl_id"
,
inputs
=
{},
outputs
=
{
"NCCLID"
:
nccl_id_var
},
attrs
=
{
"endpoint"
:
current_endpoint
,
"endpoint_list"
:
eps
,
"trainer_id"
:
trainer_id
})
return
nccl_id_var
def
pad_batch_data
(
insts
,
pad_idx
,
...
...
@@ -409,14 +442,15 @@ def test_context(exe, train_exe, dev_count):
def
train_loop
(
exe
,
train_prog
,
startup_prog
,
dev_count
,
sum_cost
,
avg_cost
,
token_num
,
predict
,
pyreader
):
token_num
,
predict
,
pyreader
,
nccl2_num_trainers
=
1
,
nccl2_trainer_id
=
0
):
# Initialize the parameters.
if
TrainTaskConfig
.
ckpt_path
:
fluid
.
io
.
load_persistables
(
exe
,
TrainTaskConfig
.
ckpt_path
)
else
:
print
(
"init fluid.framework.default_startup_program"
)
logging
.
info
(
"init fluid.framework.default_startup_program"
)
exe
.
run
(
startup_prog
)
logging
.
info
(
"begin reader"
)
train_data
=
prepare_data_generator
(
args
,
is_test
=
False
,
count
=
dev_count
,
pyreader
=
pyreader
)
...
...
@@ -429,12 +463,19 @@ def train_loop(exe, train_prog, startup_prog, dev_count, sum_cost, avg_cost,
# use token average cost among multi-devices. and the gradient scale is
# `1 / token_number` for average cost.
build_strategy
.
gradient_scale_strategy
=
fluid
.
BuildStrategy
.
GradientScaleStrategy
.
Customized
logging
.
info
(
"begin read executor"
)
exec_strategy
=
fluid
.
ExecutionStrategy
()
if
args
.
update_method
==
"nccl2"
:
exec_strategy
.
num_threads
=
1
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
TrainTaskConfig
.
use_gpu
,
loss_name
=
avg_cost
.
name
,
main_program
=
train_prog
,
build_strategy
=
build_strategy
,
exec_strategy
=
exec_strategy
)
exec_strategy
=
exec_strategy
,
num_trainers
=
nccl2_num_trainers
,
trainer_id
=
nccl2_trainer_id
)
if
args
.
val_file_pattern
is
not
None
:
test
=
test_context
(
exe
,
train_exe
,
dev_count
)
...
...
@@ -448,6 +489,8 @@ def train_loop(exe, train_prog, startup_prog, dev_count, sum_cost, avg_cost,
step_idx
=
0
init_flag
=
True
logging
.
info
(
"begin train"
)
for
pass_id
in
six
.
moves
.
xrange
(
TrainTaskConfig
.
pass_num
):
pass_start_time
=
time
.
time
()
...
...
@@ -458,26 +501,30 @@ def train_loop(exe, train_prog, startup_prog, dev_count, sum_cost, avg_cost,
data_generator
=
train_data
()
batch_id
=
0
avg_batch_time
=
time
.
time
()
while
True
:
try
:
feed_dict_list
=
prepare_feed_dict_list
(
data_generator
,
init_flag
,
dev_count
)
outs
=
train_exe
.
run
(
fetch_list
=
[
sum_cost
.
name
,
token_num
.
name
],
feed
=
feed_dict_list
)
sum_cost_val
,
token_num_val
=
np
.
array
(
outs
[
0
]),
np
.
array
(
outs
[
1
])
# sum the cost from multi-devices
total_sum_cost
=
sum_cost_val
.
sum
()
total_token_num
=
token_num_val
.
sum
()
total_avg_cost
=
total_sum_cost
/
total_token_num
print
(
"step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
"normalized loss: %f, ppl: %f"
%
(
step_idx
,
pass_id
,
batch_id
,
total_avg_cost
,
total_avg_cost
-
loss_normalizer
,
np
.
exp
([
min
(
total_avg_cost
,
100
)])))
fetch_list
=
[
sum_cost
.
name
,
token_num
.
name
]
if
batch_id
%
args
.
fetch_steps
==
0
else
[],
feed
=
feed_dict_list
)
if
batch_id
%
args
.
fetch_steps
==
0
and
batch_id
>
0
:
sum_cost_val
,
token_num_val
=
np
.
array
(
outs
[
0
]),
np
.
array
(
outs
[
1
])
# sum the cost from multi-devices
total_sum_cost
=
sum_cost_val
.
sum
()
total_token_num
=
token_num_val
.
sum
()
total_avg_cost
=
total_sum_cost
/
total_token_num
logging
.
info
(
"step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
"normalized loss: %f, ppl: %f, speed: %.2f step/s"
%
(
step_idx
,
pass_id
,
batch_id
,
total_avg_cost
,
total_avg_cost
-
loss_normalizer
,
np
.
exp
([
min
(
total_avg_cost
,
100
)]),
args
.
fetch_steps
/
(
time
.
time
()
-
avg_batch_time
)))
if
step_idx
%
int
(
TrainTaskConfig
.
save_freq
)
==
TrainTaskConfig
.
save_freq
-
1
:
...
...
@@ -490,6 +537,8 @@ def train_loop(exe, train_prog, startup_prog, dev_count, sum_cost, avg_cost,
os
.
path
.
join
(
TrainTaskConfig
.
model_dir
,
"iter_"
+
str
(
step_idx
)
+
".infer.model"
),
train_prog
)
if
batch_id
%
args
.
fetch_steps
==
0
and
batch_id
>
0
:
avg_batch_time
=
time
.
time
()
init_flag
=
False
batch_id
+=
1
step_idx
+=
1
...
...
@@ -503,13 +552,13 @@ def train_loop(exe, train_prog, startup_prog, dev_count, sum_cost, avg_cost,
# Validate and save the persistable.
if
args
.
val_file_pattern
is
not
None
:
val_avg_cost
,
val_ppl
=
test
()
print
(
logging
.
info
(
"epoch: %d, val avg loss: %f, val normalized loss: %f, val ppl: %f,"
" consumed %fs"
%
(
pass_id
,
val_avg_cost
,
val_avg_cost
-
loss_normalizer
,
val_ppl
,
time_consumed
))
else
:
print
(
"epoch: %d, consumed %fs"
%
(
pass_id
,
time_consumed
))
logging
.
info
(
"epoch: %d, consumed %fs"
%
(
pass_id
,
time_consumed
))
fluid
.
io
.
save_persistables
(
exe
,
os
.
path
.
join
(
TrainTaskConfig
.
ckpt_dir
,
...
...
@@ -527,7 +576,7 @@ def train(args):
is_local
=
os
.
getenv
(
"PADDLE_IS_LOCAL"
,
"1"
)
if
is_local
==
'0'
:
args
.
local
=
False
print
(
args
)
logging
.
info
(
args
)
if
args
.
device
==
'CPU'
:
TrainTaskConfig
.
use_gpu
=
False
...
...
@@ -592,6 +641,26 @@ def train(args):
train_loop
(
exe
,
train_prog
,
startup_prog
,
dev_count
,
sum_cost
,
avg_cost
,
token_num
,
predict
,
pyreader
)
else
:
if
args
.
update_method
==
"nccl2"
:
trainer_id
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
,
"0"
))
port
=
os
.
getenv
(
"PADDLE_PORT"
)
worker_ips
=
os
.
getenv
(
"PADDLE_TRAINERS"
)
worker_endpoints
=
[]
for
ip
in
worker_ips
.
split
(
","
):
worker_endpoints
.
append
(
':'
.
join
([
ip
,
port
]))
trainers_num
=
len
(
worker_endpoints
)
current_endpoint
=
os
.
getenv
(
"POD_IP"
)
+
":"
+
port
if
trainer_id
==
0
:
logging
.
info
(
"train_id == 0, sleep 60s"
)
time
.
sleep
(
60
)
print
(
"trainers_num:"
,
trainers_num
)
print
(
"worker_endpoints:"
,
worker_endpoints
)
print
(
"current_endpoint:"
,
current_endpoint
)
append_nccl2_prepare
(
trainer_id
,
worker_endpoints
,
current_endpoint
)
train_loop
(
exe
,
fluid
.
default_main_program
(),
dev_count
,
sum_cost
,
avg_cost
,
lr_scheduler
,
token_num
,
predict
,
trainers_num
,
trainer_id
)
return
port
=
os
.
getenv
(
"PADDLE_PORT"
,
"6174"
)
pserver_ips
=
os
.
getenv
(
"PADDLE_PSERVERS"
)
# ip,ip...
eplist
=
[]
...
...
@@ -610,6 +679,7 @@ def train(args):
startup_program
=
startup_prog
)
if
training_role
==
"PSERVER"
:
loggin
.
info
(
"distributed: pserver started"
)
current_endpoint
=
os
.
getenv
(
"POD_IP"
)
+
":"
+
os
.
getenv
(
"PADDLE_PORT"
)
if
not
current_endpoint
:
...
...
@@ -619,23 +689,21 @@ def train(args):
pserver_startup
=
t
.
get_startup_program
(
current_endpoint
,
pserver_prog
)
print
(
"psserver begin run"
)
with
open
(
'pserver_startup.desc'
,
'w'
)
as
f
:
f
.
write
(
str
(
pserver_startup
))
with
open
(
'pserver_prog.desc'
,
'w'
)
as
f
:
f
.
write
(
str
(
pserver_prog
))
exe
.
run
(
pserver_startup
)
exe
.
run
(
pserver_prog
)
elif
training_role
==
"TRAINER"
:
loggin
.
info
(
"distributed: trainer started"
)
trainer_prog
=
t
.
get_trainer_program
()
with
open
(
'trainer_prog.desc'
,
'w'
)
as
f
:
f
.
write
(
str
(
trainer_prog
))
train_loop
(
exe
,
train_prog
,
startup_prog
,
dev_count
,
sum_cost
,
avg_cost
,
token_num
,
predict
,
pyreader
)
else
:
print
(
"environment var TRAINER_ROLE should be TRAINER os PSERVER"
)
logging
.
critical
(
"environment var TRAINER_ROLE should be TRAINER os PSERVER"
)
exit
(
1
)
if
__name__
==
"__main__"
:
LOG_FORMAT
=
"[%(asctime)s %(levelname)s %(filename)s:%(lineno)d] %(message)s"
logging
.
basicConfig
(
stream
=
sys
.
stdout
,
level
=
logging
.
DEBUG
,
format
=
LOG_FORMAT
)
args
=
parse_args
()
train
(
args
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录