提交 30717188 编写于 作者: T tink2123

add eval result

上级 2bec96c1
...@@ -117,21 +117,11 @@ Evaluation is to evaluate the performance of a trained model. This sample provid ...@@ -117,21 +117,11 @@ Evaluation is to evaluate the performance of a trained model. This sample provid
Evalutaion result is shown as below: Evalutaion result is shown as below:
```text | mAP |IoU=0.50:0.95 | IoU=0.50 | IoU=0.75 |
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.377 | :------: | :------: | :------: | :------: |
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.598 | input size=608x608| 37.7 | 59.8 | 40.8 |
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.408 | input size=416x416 | 36.5 | 58.2 | 39.1 |
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.244 | input size=320x320 | 34.1 | 55.4 | 36.3 |
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.408
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.489
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.308
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.481
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.504
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.351
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.534
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.632
```
## Inference and Visualization ## Inference and Visualization
......
...@@ -118,22 +118,11 @@ Train Loss ...@@ -118,22 +118,11 @@ Train Loss
模型评估结果: 模型评估结果:
```text | mAP |IoU=0.50:0.95 | IoU=0.50 | IoU=0.75 |
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.377 | :------: | :------: | :------: | :------: |
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.598 | input size=608x608| 37.7 | 59.8 | 40.8 |
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.408 | input size=416x416 | 36.5 | 58.2 | 39.1 |
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.244 | input size=320x320 | 34.1 | 55.4 | 36.3 |
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.408
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.489
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.308
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.481
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.504
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.351
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.534
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.632
```
## 模型推断及可视化 ## 模型推断及可视化
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册