提交 2bf2eb13 编写于 作者: M mapingshuo

Merge branch 'world_conference' of https://github.com/mapingshuo/models-1 into world_conference

...@@ -114,12 +114,12 @@ All configurations used in our experiments are as follows: ...@@ -114,12 +114,12 @@ All configurations used in our experiments are as follows:
|cdssmNet|cdssm_base|python train_and_evaluate.py --model_name=cdssmNet --config=cdssm_base |cdssmNet|cdssm_base|python train_and_evaluate.py --model_name=cdssmNet --config=cdssm_base
|DecAttNet|decatt_glove|python train_and_evaluate.py --model_name=DecAttNet --config=decatt_glove |DecAttNet|decatt_glove|python train_and_evaluate.py --model_name=DecAttNet --config=decatt_glove
|InferSentNet|infer_sent_v1|python train_and_evaluate.py --model_name=InferSentNet --config=infer_sent_v1 |InferSentNet|infer_sent_v1|python train_and_evaluate.py --model_name=InferSentNet --config=infer_sent_v1
|InferSentNet|infer_sent_v2|python train_and_evaluate.py --model_name=InferSentNet --config=infer_sent_v1 |InferSentNet|infer_sent_v2|python train_and_evaluate.py --model_name=InferSentNet --config=infer_sent_v2
|SSENet|sse_base|python train_and_evaluate.py --model_name=SSENet --config=sse_base |SSENet|sse_base|python train_and_evaluate.py --model_name=SSENet --config=sse_base
## Models ## Models
We implemeted 4 models for now: the convolutional deep-structured semantic model (CDSSM, CNN-based), the ___Infer Sent Model___ (RNN-based), the shortcut-stacked encoder (SSE, RNN-based), and the decomposed attention model (DecAtt, attention-based). We implemeted 4 models for now: the convolutional deep-structured semantic model (CDSSM, CNN-based), the InferSent model (RNN-based), the shortcut-stacked encoder (SSE, RNN-based), and the decomposed attention model (DecAtt, attention-based).
|Model|features|Context Encoder|Match Layer|Classification Layer |Model|features|Context Encoder|Match Layer|Classification Layer
|:----:|:----:|:----:|:----:|:----:| |:----:|:----:|:----:|:----:|:----:|
...@@ -176,8 +176,6 @@ We implemeted 4 models for now: the convolutional deep-structured semantic model ...@@ -176,8 +176,6 @@ We implemeted 4 models for now: the convolutional deep-structured semantic model
## Results ## Results
In our experiment, we found that LSTM-based models outperformed convolution-based models. The DecAtt model has fewer parameters than LSTM-based models, but is sensitive to hyper-parameters.
|Model|Config|dev accuracy| test accuracy |Model|Config|dev accuracy| test accuracy
|:----:|:----:|:----:|:----:| |:----:|:----:|:----:|:----:|
|cdssmNet|cdssm_base|83.56%|82.83%| |cdssmNet|cdssm_base|83.56%|82.83%|
...@@ -185,8 +183,9 @@ In our experiment, we found that LSTM-based models outperformed convolution-base ...@@ -185,8 +183,9 @@ In our experiment, we found that LSTM-based models outperformed convolution-base
|InferSentNet|infer_sent_v1|87.15%|86.62%| |InferSentNet|infer_sent_v1|87.15%|86.62%|
|InferSentNet|infer_sent_v2|88.55%|88.43%| |InferSentNet|infer_sent_v2|88.55%|88.43%|
|SSENet|sse_base|88.35%|88.25%| |SSENet|sse_base|88.35%|88.25%|
In our experiment, we found that LSTM-based models outperformed convolution-based models. The DecAtt model has fewer parameters than LSTM-based models, but is sensitive to hyper-parameters.
<p align="center"> <p align="center">
<img src="imgs/models_test_acc.png" width = "500" alt="test_acc"/> <img src="imgs/models_test_acc.png" width = "500" alt="test_acc"/>
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册