提交 2bb3ce22 编写于 作者: M mapingshuo

Merge branch 'world_conference' of https://github.com/mapingshuo/models-1 into world_conference

# Text matching on Quora qestion-answer pair dataset # Text matching on Quora qestion-answer pair dataset
## contents
* [Introduction](#introduction)
* [a brief review of the Quora Question Pair (QQP) Task](#a-brief-review-of-the-quora-question-pair-qqp-task)
* [Our Work](#our-work)
* [Environment Preparation](#environment-preparation)
* [Install Fluid release 1.0](#install-fluid-release-10)
* [cpu version](#cpu-version)
* [gpu version](#gpu-version)
* [Have I installed Fluid successfully?](#have-i-installed-fluid-successfully)
* [Prepare Data](#prepare-data)
* [Train and evaluate](#train-and-evaluate)
* [Models](#models)
* [Results](#results)
## Introduction ## Introduction
### a brief review of the Quora Question Pair (QQP) Task ### a brief review of the Quora Question Pair (QQP) Task
...@@ -25,19 +41,19 @@ Based on the Quora Question Pair Dataset, we will implement some classic models ...@@ -25,19 +41,19 @@ Based on the Quora Question Pair Dataset, we will implement some classic models
## Environment Preparation ## Environment Preparation
### Install fluid release 1.0 ### Install Fluid release 1.0
You can follow the fluid's [official document](http://www.paddlepaddle.org/documentation/docs/en/1.0/build_and_install/pip_install_en.html) to install the fluid. You can follow the fluid's [official document](http://www.paddlepaddle.org/documentation/docs/en/1.0/build_and_install/pip_install_en.html) to install the fluid.
[Attention] You are supposed to install python and pip before installing fluid [Attention] You are supposed to install python and pip before installing fluid
### cpu version #### cpu version
``` ```
pip install paddlepaddle==1.0.1 pip install paddlepaddle==1.0.1
``` ```
### gpu version #### gpu version
Assume you have downloaded cuda(cuda9.0) and cudnn(cudnn7) lib, here is an expample: Assume you have downloaded cuda(cuda9.0) and cudnn(cudnn7) lib, here is an expample:
...@@ -57,12 +73,6 @@ python -c "import paddle" ...@@ -57,12 +73,6 @@ python -c "import paddle"
Fluid is installed successfully if no error message is prompted. If you get any error, feel free to open issues under the [PaddlePaddle repository](https://github.com/PaddlePaddle/Paddle/issues). Fluid is installed successfully if no error message is prompted. If you get any error, feel free to open issues under the [PaddlePaddle repository](https://github.com/PaddlePaddle/Paddle/issues).
### Install nltk module
```shell
pip install nltk
```
## Prepare Data ## Prepare Data
Please download the Quora dataset firstly from [google drive](https://drive.google.com/file/d/0B0PlTAo--BnaQWlsZl9FZ3l1c28/view?usp=sharing) Please download the Quora dataset firstly from [google drive](https://drive.google.com/file/d/0B0PlTAo--BnaQWlsZl9FZ3l1c28/view?usp=sharing)
...@@ -90,7 +100,7 @@ $HOME/.cache/paddle/dataset ...@@ -90,7 +100,7 @@ $HOME/.cache/paddle/dataset
## Train and evaluate ## Train and evaluate
We provide multiple models and configs, details are shown in models and configs directory. For quick start, you can run the cdssmNet with cdssm_base config: We provide multiple models and configs, details are shown in `models` and `configs` directory. For quick start, you can run the cdssmNet with cdssm_base config:
```shell ```shell
fluid train_and_evaluate.py \ fluid train_and_evaluate.py \
...@@ -100,23 +110,88 @@ fluid train_and_evaluate.py \ ...@@ -100,23 +110,88 @@ fluid train_and_evaluate.py \
You are supposed to get log like cdssm_base.log You are supposed to get log like cdssm_base.log
## Results All configs used in our experiments:
### Models |Model|Config|command
|:----:|:----:|:----:|
|cdssmNet|cdssm_base|python train_and_evaluate.py --model_name=cdssmNet --config=cdssm_base
|DecAttNet|decatt_glove|python train_and_evaluate.py --model_name=DecAttNet --config=decatt_glove
|InferSentNet|infer_sent_v1|python train_and_evaluate.py --model_name=InferSentNet --config=infer_sent_v1
|InferSentNet|infer_sent_v2|python train_and_evaluate.py --model_name=InferSentNet --config=infer_sent_v1
|SSENet|sse_base|python train_and_evaluate.py --model_name=SSENet --config=sse_base
#### CDSSM ## Models
#### InferSent We have implemeted 4 models for now, CDSSM(Convolutional Deep Structured Semantic Models) is a convolution-based model, Infer Sent Model and SSE(Shortcut-Stacked Encoders) are RNN-based models, and DecAtt(Decompose Attention) model is an attention-based model.
#### SSE |Model|features|Context Encoder|Match Layer|Classification Layer
|:----:|:----:|:----:|:----:|:----:|
|CDSSM|word|1 layer conv1d|concatenation|MLP
|DecAtt|word|Attention|concatenation|MLP
|InferSent|word|1 layer Bi-LSTM|concatenation/element-wise product/<br>absolute element-wise difference|MLP
|SSE|word|3 layer Bi-LSTM|concatenation/element-wise product/<br>absolute element-wise difference|MLP
#### DecAtt ### CDSSM
### Test Accuracy ```
@inproceedings{shen2014learning,
title={Learning semantic representations using convolutional neural networks for web search},
author={Shen, Yelong and He, Xiaodong and Gao, Jianfeng and Deng, Li and Mesnil, Gr{\'e}goire},
booktitle={Proceedings of the 23rd International Conference on World Wide Web},
pages={373--374},
year={2014},
organization={ACM}
}
```
|Model|dev accuracy| test accuracy ### InferSent
|:----:|:----:|:----:|
|CDSSM||| ```
|InferSent||| @article{conneau2017supervised,
|SSE||| title={Supervised learning of universal sentence representations from natural language inference data},
|DecAtt||| author={Conneau, Alexis and Kiela, Douwe and Schwenk, Holger and Barrault, Loic and Bordes, Antoine},
journal={arXiv preprint arXiv:1705.02364},
year={2017}
}
```
### SSE
```
@article{nie2017shortcut,
title={Shortcut-stacked sentence encoders for multi-domain inference},
author={Nie, Yixin and Bansal, Mohit},
journal={arXiv preprint arXiv:1708.02312},
year={2017}
}
```
### DecAtt
```
@article{tomar2017neural,
title={Neural paraphrase identification of questions with noisy pretraining},
author={Tomar, Gaurav Singh and Duque, Thyago and T{\"a}ckstr{\"o}m, Oscar and Uszkoreit, Jakob and Das, Dipanjan},
journal={arXiv preprint arXiv:1704.04565},
year={2017}
}
```
## Results
In our experiment, we found that LSTM-based models outperform convolution-based model in test set accuracy. DecAtt model has fewer parameters than LSTM-based models, but it is very sensitive to the hyper-parameters when training.
|Model|Config|dev accuracy| test accuracy
|:----:|:----:|:----:|:----:|
|cdssmNet|cdssm_base|83.56%|82.83%|
|DecAttNet|decatt_glove|86.31%|86.22%|
|InferSentNet|infer_sent_v1|87.15%|86.62%|
|InferSentNet|infer_sent_v2|88.55%|88.43%|
|SSENet|sse_base|88.35%|88.25%|
<p align="center">
<img src="imgs/models_test_acc.png" width = "500" alt="test_acc"/>
</p>
Image files for this model: text_matching_on_quora
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册