未验证 提交 2a73d909 编写于 作者: R ruri 提交者: GitHub

Merge pull request #2007 from Yancey1989/fix_py3

fix fast imagenet with py3
...@@ -335,7 +335,7 @@ def print_paddle_envs(): ...@@ -335,7 +335,7 @@ def print_paddle_envs():
print("DEVICE_NUM: %d" % DEVICE_NUM) print("DEVICE_NUM: %d" % DEVICE_NUM)
for k in os.environ: for k in os.environ:
if "PADDLE_" in k: if "PADDLE_" in k:
print "ENV %s:%s" % (k, os.environ[k]) print("ENV %s:%s" % (k, os.environ[k]))
print('------------------------------------------------') print('------------------------------------------------')
......
...@@ -22,8 +22,6 @@ import time ...@@ -22,8 +22,6 @@ import time
import os import os
import math import math
import cProfile, pstats, StringIO
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.core as core import paddle.fluid.core as core
...@@ -135,7 +133,7 @@ def lr_decay(lrs, epochs, bs, total_image): ...@@ -135,7 +133,7 @@ def lr_decay(lrs, epochs, bs, total_image):
step += 1 step += 1
ratio = (lrs[idx][1] - lrs[idx][0])*1.0 / (epoch[1] - epoch[0]) ratio = (lrs[idx][1] - lrs[idx][0])*1.0 / (epoch[1] - epoch[0])
lr_base = lrs[idx][0] lr_base = lrs[idx][0]
for s in xrange(epoch[0], epoch[1]): for s in range(epoch[0], epoch[1]):
if boundaries: if boundaries:
boundaries.append(boundaries[-1] + step + 1) boundaries.append(boundaries[-1] + step + 1)
else: else:
......
...@@ -38,7 +38,7 @@ def cosine_decay_with_warmup(learning_rate, step_each_epoch, epochs=120): ...@@ -38,7 +38,7 @@ def cosine_decay_with_warmup(learning_rate, step_each_epoch, epochs=120):
shape=[1], dtype='float32', value=float(5), force_cpu=True) shape=[1], dtype='float32', value=float(5), force_cpu=True)
with init_on_cpu(): with init_on_cpu():
epoch = ops.floor(global_step / step_each_epoch) epoch = ops.floor(global_step / step_each_epoch)
with control_flow.Switch() as switch: with control_flow.Switch() as switch:
with switch.case(epoch < warmup_epoch): with switch.case(epoch < warmup_epoch):
decayed_lr = learning_rate * (global_step / (step_each_epoch * warmup_epoch)) decayed_lr = learning_rate * (global_step / (step_each_epoch * warmup_epoch))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册