提交 29992c10 编写于 作者: W wanghaoshuang

Add parallel training option.

上级 c7a1c889
...@@ -26,7 +26,12 @@ def conv_bn_pool(input, ...@@ -26,7 +26,12 @@ def conv_bn_pool(input,
bias_attr=bias, bias_attr=bias,
is_test=is_test) is_test=is_test)
tmp = fluid.layers.pool2d( tmp = fluid.layers.pool2d(
input=tmp, pool_size=2, pool_type='max', pool_stride=2, use_cudnn=True) input=tmp,
pool_size=2,
pool_type='max',
pool_stride=2,
use_cudnn=True,
ceil_mode=True)
return tmp return tmp
...@@ -136,26 +141,61 @@ def encoder_net(images, ...@@ -136,26 +141,61 @@ def encoder_net(images,
def ctc_train_net(images, label, args, num_classes): def ctc_train_net(images, label, args, num_classes):
regularizer = fluid.regularizer.L2Decay(args.l2) regularizer = fluid.regularizer.L2Decay(args.l2)
gradient_clip = None gradient_clip = None
fc_out = encoder_net( if args.parallel:
images, places = fluid.layers.get_places()
num_classes, pd = fluid.layers.ParallelDo(places)
regularizer=regularizer, with pd.do():
gradient_clip=gradient_clip) images_ = pd.read_input(images)
label_ = pd.read_input(label)
fc_out = encoder_net(
images_,
num_classes,
regularizer=regularizer,
gradient_clip=gradient_clip)
cost = fluid.layers.warpctc(
input=fc_out,
label=label_,
blank=num_classes,
norm_by_times=True)
sum_cost = fluid.layers.reduce_sum(cost)
decoded_out = fluid.layers.ctc_greedy_decoder(
input=fc_out, blank=num_classes)
pd.write_output(sum_cost)
pd.write_output(decoded_out)
sum_cost, decoded_out = pd()
sum_cost = fluid.layers.reduce_sum(sum_cost)
else:
fc_out = encoder_net(
images,
num_classes,
regularizer=regularizer,
gradient_clip=gradient_clip)
cost = fluid.layers.warpctc(
input=fc_out, label=label, blank=num_classes, norm_by_times=True)
sum_cost = fluid.layers.reduce_sum(cost)
decoded_out = fluid.layers.ctc_greedy_decoder(
input=fc_out, blank=num_classes)
cost = fluid.layers.warpctc( casted_label = fluid.layers.cast(x=label, dtype='int64')
input=fc_out, label=label, blank=num_classes, norm_by_times=True) error_evaluator = fluid.evaluator.EditDistance(
sum_cost = fluid.layers.reduce_sum(cost) input=decoded_out, label=casted_label)
inference_program = fluid.default_main_program().clone()
with fluid.program_guard(inference_program):
inference_program = fluid.io.get_inference_program(error_evaluator)
optimizer = fluid.optimizer.Momentum( optimizer = fluid.optimizer.Momentum(
learning_rate=args.learning_rate, momentum=args.momentum) learning_rate=args.learning_rate, momentum=args.momentum)
optimizer.minimize(sum_cost) _, params_grads = optimizer.minimize(sum_cost)
decoded_out = fluid.layers.ctc_greedy_decoder( return sum_cost, error_evaluator, inference_program
input=fc_out, blank=num_classes)
casted_label = fluid.layers.cast(x=label, dtype='int64')
error_evaluator = fluid.evaluator.EditDistance(
input=decoded_out, label=casted_label)
return sum_cost, error_evaluator
def ctc_infer(images, num_classes): def ctc_infer(images, num_classes):
......
"""Trainer for OCR CTC model.""" """Trainer for OCR CTC model."""
import paddle.v2 as paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import dummy_reader import dummy_reader
import ctc_reader import ctc_reader
...@@ -24,12 +23,12 @@ add_arg('momentum', float, 0.9, "Momentum.") ...@@ -24,12 +23,12 @@ add_arg('momentum', float, 0.9, "Momentum.")
add_arg('rnn_hidden_size',int, 200, "Hidden size of rnn layers.") add_arg('rnn_hidden_size',int, 200, "Hidden size of rnn layers.")
add_arg('device', int, 0, "Device id.'-1' means running on CPU" add_arg('device', int, 0, "Device id.'-1' means running on CPU"
"while '0' means GPU-0.") "while '0' means GPU-0.")
add_arg('parallel', bool, True, "Whether use parallel training.")
# yapf: disable # yapf: disable
def load_parameter(place): def load_parameter(place):
params = load_param('./name.map', './data/model/results_without_avg_window/pass-00000/') params = load_param('./name.map', './data/model/results_without_avg_window/pass-00000/')
for name in params: for name in params:
# print "param: %s" % name
t = fluid.global_scope().find_var(name).get_tensor() t = fluid.global_scope().find_var(name).get_tensor()
t.set(params[name], place) t.set(params[name], place)
...@@ -41,7 +40,8 @@ def train(args, data_reader=dummy_reader): ...@@ -41,7 +40,8 @@ def train(args, data_reader=dummy_reader):
# define network # define network
images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32') images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int32', lod_level=1) label = fluid.layers.data(name='label', shape=[1], dtype='int32', lod_level=1)
sum_cost, error_evaluator = ctc_train_net(images, label, args, num_classes) sum_cost, error_evaluator, inference_program = ctc_train_net(images, label, args, num_classes)
# data reader # data reader
train_reader = data_reader.train(args.batch_size) train_reader = data_reader.train(args.batch_size)
test_reader = data_reader.test() test_reader = data_reader.test()
...@@ -51,11 +51,8 @@ def train(args, data_reader=dummy_reader): ...@@ -51,11 +51,8 @@ def train(args, data_reader=dummy_reader):
place = fluid.CUDAPlace(args.device) place = fluid.CUDAPlace(args.device)
exe = fluid.Executor(place) exe = fluid.Executor(place)
exe.run(fluid.default_startup_program()) exe.run(fluid.default_startup_program())
#load_parameter(place) #load_parameter(place)
inference_program = fluid.io.get_inference_program(error_evaluator)
for pass_id in range(args.pass_num): for pass_id in range(args.pass_num):
error_evaluator.reset(exe) error_evaluator.reset(exe)
batch_id = 1 batch_id = 1
...@@ -78,7 +75,6 @@ def train(args, data_reader=dummy_reader): ...@@ -78,7 +75,6 @@ def train(args, data_reader=dummy_reader):
sys.stdout.flush() sys.stdout.flush()
batch_id += 1 batch_id += 1
# evaluate model on test data
error_evaluator.reset(exe) error_evaluator.reset(exe)
for data in test_reader(): for data in test_reader():
exe.run(inference_program, feed=get_feeder_data(data, place)) exe.run(inference_program, feed=get_feeder_data(data, place))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册