Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
27730332
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
27730332
编写于
5月 23, 2019
作者:
一米半
提交者:
Yibing Liu
5月 23, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix double softmax ,fix test function and change default config of pairwise (#2303)
上级
1229fb14
变更
10
显示空白变更内容
内联
并排
Showing
10 changed file
with
194 addition
and
101 deletion
+194
-101
PaddleNLP/models/matching/losses/softmax_cross_entropy_loss.py
...eNLP/models/matching/losses/softmax_cross_entropy_loss.py
+2
-2
PaddleNLP/models/matching/mm_dnn.py
PaddleNLP/models/matching/mm_dnn.py
+13
-7
PaddleNLP/similarity_net/README.md
PaddleNLP/similarity_net/README.md
+4
-4
PaddleNLP/similarity_net/config/bow_pointwise.json
PaddleNLP/similarity_net/config/bow_pointwise.json
+5
-2
PaddleNLP/similarity_net/config/cnn_pointwise.json
PaddleNLP/similarity_net/config/cnn_pointwise.json
+5
-2
PaddleNLP/similarity_net/config/gru_pointwise.json
PaddleNLP/similarity_net/config/gru_pointwise.json
+5
-2
PaddleNLP/similarity_net/config/lstm_pointwise.json
PaddleNLP/similarity_net/config/lstm_pointwise.json
+5
-2
PaddleNLP/similarity_net/run.sh
PaddleNLP/similarity_net/run.sh
+2
-2
PaddleNLP/similarity_net/run_classifier.py
PaddleNLP/similarity_net/run_classifier.py
+141
-67
PaddleNLP/similarity_net/utils.py
PaddleNLP/similarity_net/utils.py
+12
-11
未找到文件。
PaddleNLP/models/matching/losses/softmax_cross_entropy_loss.py
浏览文件 @
27730332
...
...
@@ -3,6 +3,7 @@ softmax loss
"""
import
sys
import
paddle.fluid
as
fluid
sys
.
path
.
append
(
"../../../"
)
import
models.matching.paddle_layers
as
layers
...
...
@@ -23,8 +24,7 @@ class SoftmaxCrossEntropyLoss(object):
"""
compute loss
"""
softmax_with_cross_entropy
=
layers
.
SoftmaxWithCrossEntropyLayer
()
reduce_mean
=
layers
.
ReduceMeanLayer
()
cost
=
softmax_with_cross_entropy
.
ops
(
input
,
label
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
input
,
label
=
label
)
avg_cost
=
reduce_mean
.
ops
(
cost
)
return
avg_cost
PaddleNLP/models/matching/mm_dnn.py
浏览文件 @
27730332
...
...
@@ -49,10 +49,10 @@ class MMDNN(object):
input
=
input
,
size
=
[
self
.
vocab_size
,
self
.
emb_size
],
padding_idx
=
(
0
if
zero_pad
else
None
),
param_attr
=
fluid
.
ParamAttr
(
name
=
"word_embedding"
,
initializer
=
fluid
.
initializer
.
Xavier
()))
param_attr
=
fluid
.
ParamAttr
(
name
=
"word_embedding"
,
initializer
=
fluid
.
initializer
.
Xavier
()))
if
scale
:
emb
=
emb
*
(
self
.
emb_size
**
0.5
)
emb
=
emb
*
(
self
.
emb_size
**
0.5
)
return
emb
def
bi_dynamic_lstm
(
self
,
input
,
hidden_size
):
...
...
@@ -64,7 +64,9 @@ class MMDNN(object):
param_attr
=
fluid
.
ParamAttr
(
name
=
"fw_fc.w"
),
bias_attr
=
False
)
forward
,
_
=
fluid
.
layers
.
dynamic_lstm
(
input
=
fw_in_proj
,
size
=
4
*
hidden_size
,
is_reverse
=
False
,
input
=
fw_in_proj
,
size
=
4
*
hidden_size
,
is_reverse
=
False
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"forward_lstm.w"
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"forward_lstm.b"
))
...
...
@@ -73,7 +75,9 @@ class MMDNN(object):
param_attr
=
fluid
.
ParamAttr
(
name
=
"rv_fc.w"
),
bias_attr
=
False
)
reverse
,
_
=
fluid
.
layers
.
dynamic_lstm
(
input
=
rv_in_proj
,
size
=
4
*
hidden_size
,
is_reverse
=
True
,
input
=
rv_in_proj
,
size
=
4
*
hidden_size
,
is_reverse
=
True
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"reverse_lstm.w"
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"reverse_lstm.b"
))
return
[
forward
,
reverse
]
...
...
@@ -96,7 +100,7 @@ class MMDNN(object):
if
mask
is
not
None
:
cross_mask
=
fluid
.
layers
.
stack
(
x
=
[
mask
]
*
self
.
kernel_size
,
axis
=
1
)
conv
=
cross_mask
*
conv
+
(
1
-
cross_mask
)
*
(
-
2
**
32
+
1
)
conv
=
cross_mask
*
conv
+
(
1
-
cross_mask
)
*
(
-
2
**
32
+
1
)
# valid padding
pool
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
...
...
@@ -157,6 +161,8 @@ class MMDNN(object):
act
=
"tanh"
,
size
=
self
.
hidden_size
)
pred
=
fluid
.
layers
.
fc
(
input
=
relu_hid1
,
size
=
self
.
out_size
)
pred
=
fluid
.
layers
.
fc
(
input
=
relu_hid1
,
size
=
self
.
out_size
,
act
=
"softmax"
)
return
left_seq_encoder
,
pred
PaddleNLP/similarity_net/README.md
浏览文件 @
27730332
...
...
@@ -3,13 +3,13 @@
### 任务说明
短文本语义匹配(SimilarityNet, SimNet)是一个计算短文本相似度的框架,可以根据用户输入的两个文本,计算出相似度得分。SimNet框架在百度各产品上广泛应用,主要包括BOW、CNN、RNN、MMDNN等核心网络结构形式,提供语义相似度计算训练和预测框架,适用于信息检索、新闻推荐、智能客服等多个应用场景,帮助企业解决语义匹配问题。可通过
[
AI开放平台-短文本相似度
](
https://ai.baidu.com/tech/nlp_basic/simnet
)
线上体验。
### 效果说明
基于百度海量搜索数据,我们训练了一个SimNet-BOW-Pairwise语义匹配模型,在一些真实的FAQ问答场景中,该模型效果比基于字面的相似度方法AUC提升5%以上,我们基于百度自建测试集(包含聊天、客服等数据集)和语义匹配数据集(LCQMC)进行评测,效果如下表所示。LCQMC数据集以Accuracy为评测指标,而pairwise模型的输出为相似度,因此我们采用0.9
1作为分类阈值,相比于基线模型中网络结构同等复杂的CBOW模型(准确率为0.737),我们模型的准确率为0.7517
。
基于百度海量搜索数据,我们训练了一个SimNet-BOW-Pairwise语义匹配模型,在一些真实的FAQ问答场景中,该模型效果比基于字面的相似度方法AUC提升5%以上,我们基于百度自建测试集(包含聊天、客服等数据集)和语义匹配数据集(LCQMC)进行评测,效果如下表所示。LCQMC数据集以Accuracy为评测指标,而pairwise模型的输出为相似度,因此我们采用0.9
58作为分类阈值,相比于基线模型中网络结构同等复杂的CBOW模型(准确率为0.737),我们模型的准确率为0.7532
。
| 模型 | 百度知道 | ECOM |QQSIM | UNICOM | LCQMC |
|:-----------:|:-------------:|:-------------:|:-------------:|:-------------:|:-------------:|
| | AUC | AUC | AUC|正逆序比|Accuracy|
|BOW_Pairwise|0.676
6|0.7308|0.7643|1.5630|0.7517
|
|BOW_Pairwise|0.676
7|0.7329|0.7650|1.5630|0.7532
|
## 快速开始
#### 版本依赖
本项目依赖于 Paddlepaddle Fluid 1.3.1,请参考
[
安装指南
](
http://www.paddlepaddle.org/#quick-start
)
进行安装。
...
...
PaddleNLP/similarity_net/config/bow_pointwise.json
浏览文件 @
27730332
...
...
@@ -10,8 +10,11 @@
"class_name"
:
"SoftmaxCrossEntropyLoss"
},
"optimizer"
:
{
"class_name"
:
"SGDOptimizer"
,
"learning_rate"
:
0.001
"class_name"
:
"AdamOptimizer"
,
"learning_rate"
:
0.001
,
"beta1"
:
0.9
,
"beta2"
:
0.999
,
"epsilon"
:
1e-08
},
"task_mode"
:
"pointwise"
,
"model_path"
:
"bow_pointwise"
...
...
PaddleNLP/similarity_net/config/cnn_pointwise.json
浏览文件 @
27730332
...
...
@@ -12,8 +12,11 @@
"class_name"
:
"SoftmaxCrossEntropyLoss"
},
"optimizer"
:
{
"class_name"
:
"SGDOptimizer"
,
"learning_rate"
:
0.001
"class_name"
:
"AdamOptimizer"
,
"learning_rate"
:
0.001
,
"beta1"
:
0.9
,
"beta2"
:
0.999
,
"epsilon"
:
1e-08
},
"task_mode"
:
"pointwise"
,
"model_path"
:
"cnn_pointwise"
...
...
PaddleNLP/similarity_net/config/gru_pointwise.json
浏览文件 @
27730332
...
...
@@ -11,8 +11,11 @@
"class_name"
:
"SoftmaxCrossEntropyLoss"
},
"optimizer"
:
{
"class_name"
:
"SGDOptimizer"
,
"learning_rate"
:
0.001
"class_name"
:
"AdamOptimizer"
,
"learning_rate"
:
0.001
,
"beta1"
:
0.9
,
"beta2"
:
0.999
,
"epsilon"
:
1e-08
},
"task_mode"
:
"pointwise"
,
"model_path"
:
"gru_pointwise"
...
...
PaddleNLP/similarity_net/config/lstm_pointwise.json
浏览文件 @
27730332
...
...
@@ -11,8 +11,11 @@
"class_name"
:
"SoftmaxCrossEntropyLoss"
},
"optimizer"
:
{
"class_name"
:
"SGDOptimizer"
,
"learning_rate"
:
0.001
"class_name"
:
"AdamOptimizer"
,
"learning_rate"
:
0.001
,
"beta1"
:
0.9
,
"beta2"
:
0.999
,
"epsilon"
:
1e-08
},
"task_mode"
:
"pointwise"
,
"model_path"
:
"lstm_pointwise"
...
...
PaddleNLP/similarity_net/run.sh
浏览文件 @
27730332
...
...
@@ -38,7 +38,7 @@ train() {
--save_steps
1000
\
--validation_steps
100
\
--compute_accuracy
False
\
--lamda
0.9
1
\
--lamda
0.9
58
\
--task_mode
${
TASK_MODE
}
}
#run_evaluate
...
...
@@ -55,7 +55,7 @@ evaluate() {
--vocab_path
${
VOCAB_PATH
}
\
--task_mode
${
TASK_MODE
}
\
--compute_accuracy
False
\
--lamda
0.9
1
\
--lamda
0.9
58
\
--init_checkpoint
${
INIT_CHECKPOINT
}
}
# run_infer
...
...
PaddleNLP/similarity_net/run_classifier.py
浏览文件 @
27730332
...
...
@@ -26,40 +26,52 @@ import logging
parser
=
argparse
.
ArgumentParser
(
__doc__
)
model_g
=
utils
.
ArgumentGroup
(
parser
,
"model"
,
"model configuration and paths."
)
model_g
.
add_arg
(
"config_path"
,
str
,
None
,
"Path to the json file for EmoTect model config."
)
model_g
.
add_arg
(
"init_checkpoint"
,
str
,
"examples/cnn_pointwise.json"
,
"Init checkpoint to resume training from."
)
model_g
.
add_arg
(
"config_path"
,
str
,
None
,
"Path to the json file for EmoTect model config."
)
model_g
.
add_arg
(
"init_checkpoint"
,
str
,
"examples/cnn_pointwise.json"
,
"Init checkpoint to resume training from."
)
model_g
.
add_arg
(
"output_dir"
,
str
,
None
,
"Directory path to save checkpoints"
)
model_g
.
add_arg
(
"task_mode"
,
str
,
None
,
"task mode: pairwise or pointwise"
)
train_g
=
utils
.
ArgumentGroup
(
parser
,
"training"
,
"training options."
)
train_g
.
add_arg
(
"epoch"
,
int
,
10
,
"Number of epoches for training."
)
train_g
.
add_arg
(
"save_steps"
,
int
,
200
,
"The steps interval to save checkpoints."
)
train_g
.
add_arg
(
"validation_steps"
,
int
,
100
,
"The steps interval to evaluate model performance."
)
train_g
.
add_arg
(
"save_steps"
,
int
,
200
,
"The steps interval to save checkpoints."
)
train_g
.
add_arg
(
"validation_steps"
,
int
,
100
,
"The steps interval to evaluate model performance."
)
log_g
=
utils
.
ArgumentGroup
(
parser
,
"logging"
,
"logging related"
)
log_g
.
add_arg
(
"skip_steps"
,
int
,
10
,
"The steps interval to print loss."
)
log_g
.
add_arg
(
"verbose_result"
,
bool
,
True
,
"Whether to output verbose result."
)
log_g
.
add_arg
(
"test_result_path"
,
str
,
"test_result"
,
"Directory path to test result."
)
log_g
.
add_arg
(
"infer_result_path"
,
str
,
"infer_result"
,
"Directory path to infer result."
)
log_g
.
add_arg
(
"test_result_path"
,
str
,
"test_result"
,
"Directory path to test result."
)
log_g
.
add_arg
(
"infer_result_path"
,
str
,
"infer_result"
,
"Directory path to infer result."
)
data_g
=
utils
.
ArgumentGroup
(
parser
,
"data"
,
"Data paths, vocab paths and data processing options"
)
data_g
=
utils
.
ArgumentGroup
(
parser
,
"data"
,
"Data paths, vocab paths and data processing options"
)
data_g
.
add_arg
(
"train_data_dir"
,
str
,
None
,
"Directory path to training data."
)
data_g
.
add_arg
(
"valid_data_dir"
,
str
,
None
,
"Directory path to valid data."
)
data_g
.
add_arg
(
"test_data_dir"
,
str
,
None
,
"Directory path to testing data."
)
data_g
.
add_arg
(
"infer_data_dir"
,
str
,
None
,
"Directory path to infer data."
)
data_g
.
add_arg
(
"vocab_path"
,
str
,
None
,
"Vocabulary path."
)
data_g
.
add_arg
(
"batch_size"
,
int
,
32
,
"Total examples' number in batch for training."
)
data_g
.
add_arg
(
"batch_size"
,
int
,
32
,
"Total examples' number in batch for training."
)
run_type_g
=
utils
.
ArgumentGroup
(
parser
,
"run_type"
,
"running type options."
)
run_type_g
.
add_arg
(
"use_cuda"
,
bool
,
False
,
"If set, use GPU for training."
)
run_type_g
.
add_arg
(
"task_name"
,
str
,
None
,
"The name of task to perform sentiment classification."
)
run_type_g
.
add_arg
(
"task_name"
,
str
,
None
,
"The name of task to perform sentiment classification."
)
run_type_g
.
add_arg
(
"do_train"
,
bool
,
False
,
"Whether to perform training."
)
run_type_g
.
add_arg
(
"do_valid"
,
bool
,
False
,
"Whether to perform dev."
)
run_type_g
.
add_arg
(
"do_test"
,
bool
,
False
,
"Whether to perform testing."
)
run_type_g
.
add_arg
(
"do_infer"
,
bool
,
False
,
"Whether to perform inference."
)
run_type_g
.
add_arg
(
"compute_accuracy"
,
bool
,
False
,
"Whether to compute accuracy."
)
run_type_g
.
add_arg
(
"lamda"
,
float
,
0.91
,
"When task_mode is pairwise, lamda is the threshold for calculating the accuracy."
)
run_type_g
.
add_arg
(
"compute_accuracy"
,
bool
,
False
,
"Whether to compute accuracy."
)
run_type_g
.
add_arg
(
"lamda"
,
float
,
0.91
,
"When task_mode is pairwise, lamda is the threshold for calculating the accuracy."
)
args
=
parser
.
parse_args
()
...
...
@@ -75,14 +87,17 @@ def train(conf_dict, args):
# Get data layer
data
=
layers
.
DataLayer
()
# Load network structure dynamically
net
=
utils
.
import_class
(
"../models/matching"
,
conf_dict
[
"net"
][
"module_name"
],
conf_dict
[
"net"
][
"class_name"
])(
conf_dict
)
net
=
utils
.
import_class
(
"../models/matching"
,
conf_dict
[
"net"
][
"module_name"
],
conf_dict
[
"net"
][
"class_name"
])(
conf_dict
)
# Load loss function dynamically
loss
=
utils
.
import_class
(
"../models/matching/losses"
,
conf_dict
[
"loss"
][
"module_name"
],
conf_dict
[
"loss"
][
"class_name"
])(
conf_dict
)
loss
=
utils
.
import_class
(
"../models/matching/losses"
,
conf_dict
[
"loss"
][
"module_name"
],
conf_dict
[
"loss"
][
"class_name"
])(
conf_dict
)
# Load Optimization method
optimizer
=
utils
.
import_class
(
"../models/matching/optimizers"
,
"paddle_optimizers"
,
conf_dict
[
"optimizer"
][
"class_name"
])(
conf_dict
)
"../models/matching/optimizers"
,
"paddle_optimizers"
,
conf_dict
[
"optimizer"
][
"class_name"
])(
conf_dict
)
# load auc method
metric
=
fluid
.
metrics
.
Auc
(
name
=
"auc"
)
# Get device
...
...
@@ -95,15 +110,23 @@ def train(conf_dict, args):
if
args
.
task_mode
==
"pairwise"
:
# Build network
left
=
data
.
ops
(
name
=
"left"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
pos_right
=
data
.
ops
(
name
=
"right"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
neg_right
=
data
.
ops
(
name
=
"neg_right"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
pos_right
=
data
.
ops
(
name
=
"right"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
neg_right
=
data
.
ops
(
name
=
"neg_right"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
left_feat
,
pos_score
=
net
.
predict
(
left
,
pos_right
)
# Get Feeder and Reader
train_feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
left
.
name
,
pos_right
.
name
,
neg_right
.
name
])
train_feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
left
.
name
,
pos_right
.
name
,
neg_right
.
name
])
train_reader
=
simnet_process
.
get_reader
(
"train"
)
if
args
.
do_valid
:
valid_feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
left
.
name
,
pos_right
.
name
])
valid_feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
left
.
name
,
pos_right
.
name
])
valid_reader
=
simnet_process
.
get_reader
(
"valid"
)
pred
=
pos_score
# Save Infer model
...
...
@@ -119,10 +142,12 @@ def train(conf_dict, args):
left_feat
,
pred
=
net
.
predict
(
left
,
right
)
# Get Feeder and Reader
train_feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
left
.
name
,
right
.
name
,
label
.
name
])
train_feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
left
.
name
,
right
.
name
,
label
.
name
])
train_reader
=
simnet_process
.
get_reader
(
"train"
)
if
args
.
do_valid
:
valid_feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
left
.
name
,
right
.
name
])
valid_feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
left
.
name
,
right
.
name
])
valid_reader
=
simnet_process
.
get_reader
(
"valid"
)
# Save Infer model
infer_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
...
...
@@ -134,7 +159,9 @@ def train(conf_dict, args):
executor
=
fluid
.
Executor
(
place
)
executor
.
run
(
fluid
.
default_startup_program
())
# Get and run executor
parallel_executor
=
fluid
.
ParallelExecutor
(
use_cuda
=
args
.
use_cuda
,
loss_name
=
avg_cost
.
name
,
parallel_executor
=
fluid
.
ParallelExecutor
(
use_cuda
=
args
.
use_cuda
,
loss_name
=
avg_cost
.
name
,
main_program
=
fluid
.
default_main_program
())
# Get device number
device_count
=
parallel_executor
.
device_count
...
...
@@ -148,22 +175,25 @@ def train(conf_dict, args):
batch_data
=
paddle
.
batch
(
reader
,
args
.
batch_size
,
drop_last
=
False
)
pred_list
=
[]
for
data
in
batch_data
():
_pred
=
executor
.
run
(
program
=
program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
pred
.
name
])
_pred
=
executor
.
run
(
program
=
program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
pred
.
name
])
pred_list
+=
list
(
_pred
)
pred_list
=
np
.
vstack
(
pred_list
)
if
mode
==
"test"
:
label_list
=
process
.
get_test_label
()
elif
mode
==
"valid"
:
label_list
=
process
.
get_valid_label
()
if
conf_dict
[
'net'
][
'class_name'
]
==
'MMDNN'
:
pred_list
=
utils
.
deal_preds_of_mmdnn
(
conf_dict
,
pred_list
)
if
args
.
task_mode
==
"pairwise"
:
pred_list
=
np
.
hstack
((
np
.
ones_like
(
pred_list
)
-
pred_list
,
pred_list
))
pred_list
=
(
pred_list
+
1
)
/
2
pred_list
=
np
.
hstack
(
(
np
.
ones_like
(
pred_list
)
-
pred_list
,
pred_list
))
metric
.
reset
()
metric
.
update
(
pred_list
,
label_list
)
auc
=
metric
.
eval
()
if
args
.
compute_accuracy
:
acc
=
utils
.
get_accuracy
(
pred_list
,
label_list
,
args
.
task_mode
,
args
.
lamda
)
acc
=
utils
.
get_accuracy
(
pred_list
,
label_list
,
args
.
task_mode
,
args
.
lamda
)
return
auc
,
acc
else
:
return
auc
...
...
@@ -175,27 +205,41 @@ def train(conf_dict, args):
for
epoch_id
in
range
(
args
.
epoch
):
losses
=
[]
# Get batch data iterator
train_batch_data
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
train_reader
,
buf_size
=
10000
),
args
.
batch_size
,
drop_last
=
False
)
train_batch_data
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
train_reader
,
buf_size
=
10000
),
args
.
batch_size
,
drop_last
=
False
)
start_time
=
time
.
time
()
for
iter
,
data
in
enumerate
(
train_batch_data
()):
if
len
(
data
)
<
device_count
:
logging
.
info
(
"the size of batch data is less than device_count(%d)"
%
device_count
)
logging
.
info
(
"the size of batch data is less than device_count(%d)"
%
device_count
)
continue
global_step
+=
1
avg_loss
=
parallel_executor
.
run
([
avg_cost
.
name
],
feed
=
train_feeder
.
feed
(
data
))
avg_loss
=
parallel_executor
.
run
([
avg_cost
.
name
],
feed
=
train_feeder
.
feed
(
data
))
if
args
.
do_valid
and
global_step
%
args
.
validation_steps
==
0
:
valid_result
=
valid_and_test
(
program
=
infer_program
,
feeder
=
valid_feeder
,
reader
=
valid_reader
,
process
=
simnet_process
,
mode
=
"valid"
)
valid_result
=
valid_and_test
(
program
=
infer_program
,
feeder
=
valid_feeder
,
reader
=
valid_reader
,
process
=
simnet_process
,
mode
=
"valid"
)
if
args
.
compute_accuracy
:
valid_auc
,
valid_acc
=
valid_result
logging
.
info
(
"global_steps: %d, valid_auc: %f, valid_acc: %f"
%
(
global_step
,
valid_auc
,
valid_acc
))
logging
.
info
(
"global_steps: %d, valid_auc: %f, valid_acc: %f"
%
(
global_step
,
valid_auc
,
valid_acc
))
else
:
valid_auc
=
valid_result
logging
.
info
(
"global_steps: %d, valid_auc: %f"
%
(
global_step
,
valid_auc
))
logging
.
info
(
"global_steps: %d, valid_auc: %f"
%
(
global_step
,
valid_auc
))
if
global_step
%
args
.
save_steps
==
0
:
model_save_dir
=
os
.
path
.
join
(
args
.
output_dir
,
conf_dict
[
"model_path"
])
model_save_dir
=
os
.
path
.
join
(
args
.
output_dir
,
conf_dict
[
"model_path"
])
model_path
=
os
.
path
.
join
(
model_save_dir
,
str
(
global_step
))
if
not
os
.
path
.
exists
(
model_save_dir
):
...
...
@@ -204,28 +248,40 @@ def train(conf_dict, args):
feed_var_names
=
[
left
.
name
,
pos_right
.
name
]
target_vars
=
[
left_feat
,
pos_score
]
else
:
feed_var_names
=
[
left
.
name
,
right
.
name
,
]
feed_var_names
=
[
left
.
name
,
right
.
name
,
]
target_vars
=
[
left_feat
,
pred
]
fluid
.
io
.
save_inference_model
(
model_path
,
feed_var_names
,
target_vars
,
executor
,
infer_program
)
fluid
.
io
.
save_inference_model
(
model_path
,
feed_var_names
,
target_vars
,
executor
,
infer_program
)
logging
.
info
(
"saving infer model in %s"
%
model_path
)
losses
.
append
(
np
.
mean
(
avg_loss
[
0
]))
end_time
=
time
.
time
()
logging
.
info
(
"epoch: %d, loss: %f, used time: %d sec"
%
(
epoch_id
,
np
.
mean
(
losses
),
end_time
-
start_time
))
logging
.
info
(
"epoch: %d, loss: %f, used time: %d sec"
%
(
epoch_id
,
np
.
mean
(
losses
),
end_time
-
start_time
))
if
args
.
do_test
:
if
args
.
task_mode
==
"pairwise"
:
# Get Feeder and Reader
test_feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
left
.
name
,
pos_right
.
name
])
test_feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
left
.
name
,
pos_right
.
name
])
test_reader
=
simnet_process
.
get_reader
(
"test"
)
else
:
# Get Feeder and Reader
test_feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
left
.
name
,
right
.
name
])
test_feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
left
.
name
,
right
.
name
])
test_reader
=
simnet_process
.
get_reader
(
"test"
)
test_result
=
valid_and_test
(
program
=
infer_program
,
feeder
=
test_feeder
,
reader
=
test_reader
,
process
=
simnet_process
,
mode
=
"test"
)
test_result
=
valid_and_test
(
program
=
infer_program
,
feeder
=
test_feeder
,
reader
=
test_reader
,
process
=
simnet_process
,
mode
=
"test"
)
if
args
.
compute_accuracy
:
test_auc
,
test_acc
=
test_result
logging
.
info
(
"AUC of test is %f, Accuracy of test is %f"
%
(
test_auc
,
test_acc
))
logging
.
info
(
"AUC of test is %f, Accuracy of test is %f"
%
(
test_auc
,
test_acc
))
else
:
test_auc
=
test_result
logging
.
info
(
"AUC of test is %f"
%
test_auc
)
...
...
@@ -250,46 +306,56 @@ def test(conf_dict, args):
# Get executor
executor
=
fluid
.
Executor
(
place
=
place
)
# Load model
program
,
feed_var_names
,
fetch_targets
=
fluid
.
io
.
load_inference_model
(
model_path
,
executor
)
program
,
feed_var_names
,
fetch_targets
=
fluid
.
io
.
load_inference_model
(
model_path
,
executor
)
if
args
.
task_mode
==
"pairwise"
:
# Get Feeder and Reader
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
feed_var_names
,
program
=
program
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
feed_var_names
,
program
=
program
)
test_reader
=
simnet_process
.
get_reader
(
"test"
)
else
:
# Get Feeder and Reader
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
feed_var_names
,
program
=
program
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
feed_var_names
,
program
=
program
)
test_reader
=
simnet_process
.
get_reader
(
"test"
)
# Get batch data iterator
batch_data
=
paddle
.
batch
(
test_reader
,
args
.
batch_size
,
drop_last
=
False
)
logging
.
info
(
"start test process ..."
)
pred_list
=
[]
for
iter
,
data
in
enumerate
(
batch_data
()):
output
=
executor
.
run
(
program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
fetch_targets
)
output
=
executor
.
run
(
program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
fetch_targets
)
if
args
.
task_mode
==
"pairwise"
:
pred_list
+=
list
(
map
(
lambda
item
:
float
(
item
[
0
]),
output
[
1
]))
predictions_file
.
write
(
"
\n
"
.
join
(
map
(
lambda
item
:
str
(
item
[
0
]),
output
[
1
]))
+
"
\n
"
)
predictions_file
.
write
(
"
\n
"
.
join
(
map
(
lambda
item
:
str
((
item
[
0
]
+
1
)
/
2
),
output
[
1
]))
+
"
\n
"
)
else
:
pred_list
+=
map
(
lambda
item
:
item
,
output
[
1
])
predictions_file
.
write
(
"
\n
"
.
join
(
map
(
lambda
item
:
str
(
np
.
argmax
(
item
)),
output
[
1
]))
+
"
\n
"
)
if
conf_dict
[
'net'
][
'class_name'
]
==
'MMDNN'
:
pred_list
=
utils
.
deal_preds_of_mmdnn
(
conf_dict
,
pred_list
)
predictions_file
.
write
(
"
\n
"
.
join
(
map
(
lambda
item
:
str
(
np
.
argmax
(
item
)),
output
[
1
]))
+
"
\n
"
)
if
args
.
task_mode
==
"pairwise"
:
pred_list
=
np
.
array
(
pred_list
).
reshape
((
-
1
,
1
))
pred_list
=
np
.
hstack
((
np
.
ones_like
(
pred_list
)
-
pred_list
,
pred_list
))
pred_list
=
(
pred_list
+
1
)
/
2
pred_list
=
np
.
hstack
(
(
np
.
ones_like
(
pred_list
)
-
pred_list
,
pred_list
))
else
:
pred_list
=
np
.
array
(
pred_list
)
labels
=
simnet_process
.
get_test_label
()
metric
.
update
(
pred_list
,
labels
)
if
args
.
compute_accuracy
:
acc
=
utils
.
get_accuracy
(
pred_list
,
labels
,
args
.
task_mode
,
args
.
lamda
)
logging
.
info
(
"AUC of test is %f, Accuracy of test is %f"
%
(
metric
.
eval
(),
acc
))
acc
=
utils
.
get_accuracy
(
pred_list
,
labels
,
args
.
task_mode
,
args
.
lamda
)
logging
.
info
(
"AUC of test is %f, Accuracy of test is %f"
%
(
metric
.
eval
(),
acc
))
else
:
logging
.
info
(
"AUC of test is %f"
%
metric
.
eval
())
if
args
.
verbose_result
:
utils
.
get_result_file
(
args
)
logging
.
info
(
"test result saved in %s"
%
os
.
path
.
join
(
os
.
getcwd
(),
args
.
test_result_path
))
logging
.
info
(
"test result saved in %s"
%
os
.
path
.
join
(
os
.
getcwd
(),
args
.
test_result_path
))
def
infer
(
args
):
...
...
@@ -308,29 +374,36 @@ def infer(args):
# Get executor
executor
=
fluid
.
Executor
(
place
=
place
)
# Load model
program
,
feed_var_names
,
fetch_targets
=
fluid
.
io
.
load_inference_model
(
model_path
,
executor
)
program
,
feed_var_names
,
fetch_targets
=
fluid
.
io
.
load_inference_model
(
model_path
,
executor
)
if
args
.
task_mode
==
"pairwise"
:
# Get Feeder and Reader
infer_feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
feed_var_names
,
program
=
program
)
infer_feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
feed_var_names
,
program
=
program
)
infer_reader
=
simnet_process
.
get_infer_reader
else
:
# Get Feeder and Reader
infer_feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
feed_var_names
,
program
=
program
)
infer_feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
feed_var_names
,
program
=
program
)
infer_reader
=
simnet_process
.
get_infer_reader
# Get batch data iterator
batch_data
=
paddle
.
batch
(
infer_reader
,
args
.
batch_size
,
drop_last
=
False
)
logging
.
info
(
"start test process ..."
)
preds_list
=
[]
for
iter
,
data
in
enumerate
(
batch_data
()):
output
=
executor
.
run
(
program
,
feed
=
infer_feeder
.
feed
(
data
),
fetch_list
=
fetch_targets
)
output
=
executor
.
run
(
program
,
feed
=
infer_feeder
.
feed
(
data
),
fetch_list
=
fetch_targets
)
if
args
.
task_mode
==
"pairwise"
:
preds_list
+=
list
(
map
(
lambda
item
:
str
(
item
[
0
]),
output
[
1
]))
preds_list
+=
list
(
map
(
lambda
item
:
str
((
item
[
0
]
+
1
)
/
2
),
output
[
1
]))
else
:
preds_list
+=
map
(
lambda
item
:
str
(
np
.
argmax
(
item
)),
output
[
1
])
with
open
(
args
.
infer_result_path
,
"w"
)
as
infer_file
:
for
_data
,
_pred
in
zip
(
simnet_process
.
get_infer_data
(),
preds_list
):
infer_file
.
write
(
_data
+
"
\t
"
+
_pred
+
"
\n
"
)
logging
.
info
(
"infer result saved in %s"
%
os
.
path
.
join
(
os
.
getcwd
(),
args
.
infer_result_path
))
logging
.
info
(
"infer result saved in %s"
%
os
.
path
.
join
(
os
.
getcwd
(),
args
.
infer_result_path
))
def
main
(
conf_dict
,
args
):
...
...
@@ -344,7 +417,8 @@ def main(conf_dict, args):
elif
args
.
do_infer
:
infer
(
args
)
else
:
raise
ValueError
(
"one of do_train and do_test and do_infer must be True"
)
raise
ValueError
(
"one of do_train and do_test and do_infer must be True"
)
if
__name__
==
"__main__"
:
...
...
PaddleNLP/similarity_net/utils.py
浏览文件 @
27730332
...
...
@@ -11,7 +11,6 @@ import six
import
numpy
as
np
import
logging
import
logging.handlers
"""
******functions for file processing******
"""
...
...
@@ -165,7 +164,11 @@ def print_arguments(args):
print
(
'------------------------------------------------'
)
def
init_log
(
log_path
,
level
=
logging
.
INFO
,
when
=
"D"
,
backup
=
7
,
def
init_log
(
log_path
,
level
=
logging
.
INFO
,
when
=
"D"
,
backup
=
7
,
format
=
"%(levelname)s: %(asctime)s - %(filename)s:%(lineno)d * %(thread)d %(message)s"
,
datefmt
=
None
):
"""
...
...
@@ -209,16 +212,14 @@ def init_log(log_path, level=logging.INFO, when="D", backup=7,
if
not
os
.
path
.
isdir
(
dir
):
os
.
makedirs
(
dir
)
handler
=
logging
.
handlers
.
TimedRotatingFileHandler
(
log_path
+
".log"
,
when
=
when
,
backupCount
=
backup
)
handler
=
logging
.
handlers
.
TimedRotatingFileHandler
(
log_path
+
".log"
,
when
=
when
,
backupCount
=
backup
)
handler
.
setLevel
(
level
)
handler
.
setFormatter
(
formatter
)
logger
.
addHandler
(
handler
)
handler
=
logging
.
handlers
.
TimedRotatingFileHandler
(
log_path
+
".log.wf"
,
when
=
when
,
backupCount
=
backup
)
handler
=
logging
.
handlers
.
TimedRotatingFileHandler
(
log_path
+
".log.wf"
,
when
=
when
,
backupCount
=
backup
)
handler
.
setLevel
(
logging
.
WARNING
)
handler
.
setFormatter
(
formatter
)
logger
.
addHandler
(
handler
)
...
...
@@ -241,7 +242,7 @@ def get_level():
return
logger
.
level
def
get_accuracy
(
preds
,
labels
,
mode
,
lamda
=
0.9
1
):
def
get_accuracy
(
preds
,
labels
,
mode
,
lamda
=
0.9
58
):
"""
compute accuracy
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录