Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
228db9c2
M
models
项目概览
PaddlePaddle
/
models
接近 2 年 前同步成功
通知
230
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
228db9c2
编写于
5月 12, 2017
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
change according to comments on commit e43f1e2
上级
cee7f2b9
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
104 addition
and
35 deletion
+104
-35
sequence_tagging_for_ner/README.md
sequence_tagging_for_ner/README.md
+51
-13
sequence_tagging_for_ner/conll03.py
sequence_tagging_for_ner/conll03.py
+29
-15
sequence_tagging_for_ner/image/data_format.png
sequence_tagging_for_ner/image/data_format.png
+0
-0
sequence_tagging_for_ner/image/ner_network.png
sequence_tagging_for_ner/image/ner_network.png
+0
-0
sequence_tagging_for_ner/ner.py
sequence_tagging_for_ner/ner.py
+24
-7
未找到文件。
sequence_tagging_for_ner/README.md
浏览文件 @
228db9c2
#命名实体识别
#命名实体识别
##背景说明
##背景说明
命名实体识别(Named Entity Recognition,NER)又称作“专名识别”,是指识别文本中具有特定意义的实体,主要包括人名、地名、机构名、专有名词等,是自然语言处理研究的一个基础问题。NER任务通常包括实体边界识别、确定实体类别两部分,可以将其作为序列标注问题,根据序列标注结果可以直接得到实体边界和实体类别。
命名实体识别(Named Entity Recognition,NER)又称作“专名识别”,是指识别文本中具有特定意义的实体,主要包括人名、地名、机构名、专有名词等,是自然语言处理研究的一个基础问题。NER任务通常包括实体边界识别、确定实体类别两部分,可以将其作为序列标注问题,根据序列标注结果可以直接得到实体边界和实体类别。
##数据说明
##数据说明
在本示例中,我们将使用CoNLL 2003 NER任务中开放出的数据集。由于版权原因,我们暂不提供此数据集的下载,可以按照
[
此页面
](
http://www.clips.uantwerpen.be/conll2003/ner/
)
中的说明免费获取该数据。该数据集中训练和测试数据格式如下
<img
src=
"image/data_format.png"
width =
"60%"
align=
center
/><br>
在本示例中,我们将使用CoNLL 2003 NER任务中开放出的数据集。由于版权原因,我们暂不提供此数据集的下载,可以按照
[
此页面
](
http://www.clips.uantwerpen.be/conll2003/ner/
)
中的说明免费获取该数据。此数据集中训练和测试数据格式如下:
其中第一列为原始句子序列,第四列为采用了I-TYPE方式表示的NER标签(I-TYPE和
[
BIO方式
](
https://github.com/PaddlePaddle/book/tree/develop/07.label_semantic_roles
)
的主要区别在于语块开始标记的使用上,I-TYPE只有在出现相邻的同类别实体时对后者使用B标记,其他均使用I标记),而我们这里将使用BIO方式表示的标签集,这两种方式的转换过程在我们提供的
`conll03.py`
文件中进行。另外,我们针对此数据集提供了word词典、label词典和预训练的词向量三个文件,可以直接下载使用。
```
U.N. NNP I-NP I-ORG
official NN I-NP O
Ekeus NNP I-NP I-PER
heads VBZ I-VP O
for IN I-PP O
Baghdad NNP I-NP I-LOC
. . O O
```
其中第一列为原始句子序列(第二、三列分别为词性标签和句法分析中的语块标签,这里暂时不用),第四列为采用了I-TYPE方式表示的NER标签(I-TYPE和
[
BIO方式
](
https://github.com/PaddlePaddle/book/tree/develop/07.label_semantic_roles
)
的主要区别在于语块开始标记的使用上,I-TYPE只有在出现相邻的同类别实体时对后者使用B标记,其他均使用I标记),而我们这里将使用BIO方式表示的标签集,这两种方式的转换过程在我们提供的
`conll03.py`
文件中进行。另外,我们附上word词典、label词典和预训练的词向量三个文件(word词典和词向量来源于
[
Stanford cs224d
](
http://cs224d.stanford.edu/
)
课程作业)以供使用。
##模型说明
##模型说明
在本示例中,我们所使用的模型结构如图1所示,更多关于序列标注网络模型的知识可见
[
此页面
](
https://github.com/PaddlePaddle/book/tree/develop/07.label_semantic_roles
)
。
在本示例中,我们所使用的模型结构如图1所示。其输入为句子序列,在取词向量转换为词向量序列后,经过多组全连接层、双向RNN进行特征提取,最后接入CRF以学习到的特征为输入,以标记序列为监督信号,完成序列标注。更多关于RNN及其变体的知识可见
[
此页面
](
http://book.paddlepaddle.org/06.understand_sentiment/
)
。
<div
align=
"center"
>
<div
align=
"center"
>
<img
src=
"image/ner_network.png"
width =
"
6
0%"
align=
center
/><br>
<img
src=
"image/ner_network.png"
width =
"
4
0%"
align=
center
/><br>
图1. NER模型网络结构
图1. NER模型网络结构
</div>
</div>
##使用说明
在获取到上文提到的数据集和文件资源后,将
`ner.py`
中如下的数据设置部分进行更改
##运行说明
###数据设置
运行
`ner.py`
需要对数据设置部分进行更改,将以下代码中的变量值修改为正确的文件路径即可。
```
python
```
python
# init dataset
# init dataset
train_data_file
=
'data/train'
train_data_file
=
'data/train'
#训练数据文件
test_data_file
=
'data/test'
test_data_file
=
'data/test'
#测试数据文件
vocab_file
=
'data/vocab.txt'
vocab_file
=
'data/vocab.txt'
#word_dict文件
target_file
=
'data/target.txt'
target_file
=
'data/target.txt'
#label_dict文件
emb_file
=
'data/wordVectors.txt'
emb_file
=
'data/wordVectors.txt'
#词向量文件
```
```
TBD
###训练和预测
`ner.py`
提供了以下两个接口分别进行模型训练和预测:
1.
`ner_net_train(data_reader, num_passes)`
函数实现了模型训练功能,参数
`data_reader`
表示训练数据的迭代器(使用默认值即可)、
`num_passes`
表示训练pass的轮数。训练过程中每100个iteration会打印模型训练信息,每个pass后会将模型保存下来,并将最终模型保存为
`ner_net.tar.gz`
。
2.
`ner_net_infer(data_reader, model_file)`
函数实现了预测功能,参数
`data_reader`
表示测试数据的迭代器(使用默认值即可)、
`model_file`
表示保存在本地的模型文件,预测过程会按如下格式打印预测结果:
```
U.N. B-ORG
official O
Ekeus B-PER
heads O
for O
Baghdad B-LOC
. O
```
其中第一列为原始句子序列,第二列为BIO方式表示的NER标签。
sequence_tagging_for_ner/conll03.py
浏览文件 @
228db9c2
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
"""
Conll03 dataset.
Conll03 dataset.
"""
"""
...
@@ -18,6 +5,7 @@ Conll03 dataset.
...
@@ -18,6 +5,7 @@ Conll03 dataset.
import
tarfile
import
tarfile
import
gzip
import
gzip
import
itertools
import
itertools
import
collections
import
re
import
re
import
numpy
as
np
import
numpy
as
np
...
@@ -43,6 +31,32 @@ def canonicalize_word(word, wordset=None, digits=True):
...
@@ -43,6 +31,32 @@ def canonicalize_word(word, wordset=None, digits=True):
else
:
return
"UUUNKKK"
# unknown token
else
:
return
"UUUNKKK"
# unknown token
def
corpus_reader
(
filename
=
'data/train'
):
def
reader
():
sentence
=
[]
labels
=
[]
with
open
(
filename
)
as
f
:
for
line
in
f
:
if
re
.
match
(
r
"-DOCSTART-.+"
,
line
)
or
(
len
(
line
.
strip
())
==
0
):
if
len
(
sentence
)
>
0
:
yield
sentence
,
labels
sentence
=
[]
labels
=
[]
else
:
segs
=
line
.
strip
().
split
()
sentence
.
append
(
segs
[
0
])
# transform from I-TYPE to BIO schema
if
segs
[
-
1
]
!=
'O'
and
(
len
(
labels
)
==
0
or
labels
[
-
1
][
1
:]
!=
segs
[
-
1
][
1
:]):
labels
.
append
(
'B'
+
segs
[
-
1
][
1
:])
else
:
labels
.
append
(
segs
[
-
1
])
f
.
close
()
return
reader
def
load_dict
(
filename
):
def
load_dict
(
filename
):
d
=
dict
()
d
=
dict
()
with
open
(
filename
,
'r'
)
as
f
:
with
open
(
filename
,
'r'
)
as
f
:
...
@@ -98,7 +112,7 @@ def reader_creator(corpus_reader, word_dict, label_dict):
...
@@ -98,7 +112,7 @@ def reader_creator(corpus_reader, word_dict, label_dict):
Conll03 train set creator.
Conll03 train set creator.
The dataset can be obtained according to http://www.clips.uantwerpen.be/conll2003/ner/.
The dataset can be obtained according to http://www.clips.uantwerpen.be/conll2003/ner/.
It returns a reader creator, each sample in the reader includes
sentence sequence and tagged sequence
.
It returns a reader creator, each sample in the reader includes
word id sequence, label id sequence and raw sentence for purpose of print
.
:return: Training reader creator
:return: Training reader creator
:rtype: callable
:rtype: callable
...
@@ -111,7 +125,7 @@ def reader_creator(corpus_reader, word_dict, label_dict):
...
@@ -111,7 +125,7 @@ def reader_creator(corpus_reader, word_dict, label_dict):
for
w
in
sentence
for
w
in
sentence
]
]
label_idx
=
[
label_dict
.
get
(
w
)
for
w
in
labels
]
label_idx
=
[
label_dict
.
get
(
w
)
for
w
in
labels
]
yield
word_idx
,
label_idx
yield
word_idx
,
label_idx
,
sentence
return
reader
return
reader
...
...
sequence_tagging_for_ner/image/data_format.png
已删除
100644 → 0
浏览文件 @
cee7f2b9
29.0 KB
sequence_tagging_for_ner/image/ner_network.png
查看替换文件 @
cee7f2b9
浏览文件 @
228db9c2
171.1 KB
|
W:
|
H:
126.4 KB
|
W:
|
H:
2-up
Swipe
Onion skin
sequence_tagging_for_ner/ner.py
浏览文件 @
228db9c2
...
@@ -49,6 +49,7 @@ def ner_net(is_train):
...
@@ -49,6 +49,7 @@ def ner_net(is_train):
hidden_1
=
paddle
.
layer
.
mixed
(
hidden_1
=
paddle
.
layer
.
mixed
(
name
=
'hidden1'
,
name
=
'hidden1'
,
size
=
hidden_dim
,
size
=
hidden_dim
,
act
=
paddle
.
activation
.
Tanh
(),
bias_attr
=
std_default
,
bias_attr
=
std_default
,
input
=
[
input
=
[
paddle
.
layer
.
full_matrix_projection
(
paddle
.
layer
.
full_matrix_projection
(
...
@@ -74,8 +75,10 @@ def ner_net(is_train):
...
@@ -74,8 +75,10 @@ def ner_net(is_train):
param_attr
=
rnn_para_attr
)
param_attr
=
rnn_para_attr
)
hidden_2_1
=
paddle
.
layer
.
mixed
(
hidden_2_1
=
paddle
.
layer
.
mixed
(
name
=
'hidden2-1'
,
size
=
hidden_dim
,
size
=
hidden_dim
,
bias_attr
=
std_default
,
bias_attr
=
std_default
,
act
=
paddle
.
activation
.
STanh
(),
input
=
[
input
=
[
paddle
.
layer
.
full_matrix_projection
(
paddle
.
layer
.
full_matrix_projection
(
input
=
hidden_1
,
param_attr
=
hidden_para_attr
),
input
=
hidden_1
,
param_attr
=
hidden_para_attr
),
...
@@ -83,8 +86,10 @@ def ner_net(is_train):
...
@@ -83,8 +86,10 @@ def ner_net(is_train):
input
=
rnn_1_1
,
param_attr
=
rnn_para_attr
)
input
=
rnn_1_1
,
param_attr
=
rnn_para_attr
)
])
])
hidden_2_2
=
paddle
.
layer
.
mixed
(
hidden_2_2
=
paddle
.
layer
.
mixed
(
name
=
'hidden2-2'
,
size
=
hidden_dim
,
size
=
hidden_dim
,
bias_attr
=
std_default
,
bias_attr
=
std_default
,
act
=
paddle
.
activation
.
STanh
(),
input
=
[
input
=
[
paddle
.
layer
.
full_matrix_projection
(
paddle
.
layer
.
full_matrix_projection
(
input
=
hidden_1
,
param_attr
=
hidden_para_attr
),
input
=
hidden_1
,
param_attr
=
hidden_para_attr
),
...
@@ -110,6 +115,7 @@ def ner_net(is_train):
...
@@ -110,6 +115,7 @@ def ner_net(is_train):
name
=
'hidden3'
,
name
=
'hidden3'
,
size
=
hidden_dim
,
size
=
hidden_dim
,
bias_attr
=
std_default
,
bias_attr
=
std_default
,
act
=
paddle
.
activation
.
STanh
(),
input
=
[
input
=
[
paddle
.
layer
.
full_matrix_projection
(
paddle
.
layer
.
full_matrix_projection
(
input
=
hidden_2_1
,
param_attr
=
hidden_para_attr
),
input
=
hidden_2_1
,
param_attr
=
hidden_para_attr
),
...
@@ -158,7 +164,7 @@ def ner_net(is_train):
...
@@ -158,7 +164,7 @@ def ner_net(is_train):
return
predict
return
predict
def
ner_net_train
(
data_reader
,
num_passes
=
1
):
def
ner_net_train
(
data_reader
=
train_data_reader
,
num_passes
=
1
):
# define network topology
# define network topology
crf_cost
,
crf_dec
,
target
=
ner_net
(
is_train
=
True
)
crf_cost
,
crf_dec
,
target
=
ner_net
(
is_train
=
True
)
evaluator
.
sum
(
name
=
'error'
,
input
=
crf_dec
)
evaluator
.
sum
(
name
=
'error'
,
input
=
crf_dec
)
...
@@ -201,7 +207,9 @@ def ner_net_train(data_reader, num_passes=1):
...
@@ -201,7 +207,9 @@ def ner_net_train(data_reader, num_passes=1):
# save parameters
# save parameters
with
gzip
.
open
(
'params_pass_%d.tar.gz'
%
event
.
pass_id
,
'w'
)
as
f
:
with
gzip
.
open
(
'params_pass_%d.tar.gz'
%
event
.
pass_id
,
'w'
)
as
f
:
parameters
.
to_tar
(
f
)
parameters
.
to_tar
(
f
)
if
event
.
pass_id
==
num_passes
-
1
:
with
gzip
.
open
(
'ner_model.tar.gz'
,
'w'
)
as
f
:
parameters
.
to_tar
(
f
)
result
=
trainer
.
test
(
reader
=
reader
,
feeding
=
feeding
)
result
=
trainer
.
test
(
reader
=
reader
,
feeding
=
feeding
)
print
"
\n
Test with Pass %d, %s"
%
(
event
.
pass_id
,
result
.
metrics
)
print
"
\n
Test with Pass %d, %s"
%
(
event
.
pass_id
,
result
.
metrics
)
...
@@ -214,11 +222,13 @@ def ner_net_train(data_reader, num_passes=1):
...
@@ -214,11 +222,13 @@ def ner_net_train(data_reader, num_passes=1):
return
parameters
return
parameters
def
ner_net_infer
(
data_reader
,
parameters
):
def
ner_net_infer
(
data_reader
=
test_data_reader
,
model_file
=
'ner_model.tar.gz'
):
test_creator
=
data_reader
test_creator
=
data_reader
test_data
=
[]
test_data
=
[]
test_sentences
=
[]
for
item
in
test_creator
():
for
item
in
test_creator
():
test_data
.
append
([
item
[
0
]])
test_data
.
append
([
item
[
0
]])
test_sentences
.
append
(
item
[
-
1
])
if
len
(
test_data
)
==
10
:
if
len
(
test_data
)
==
10
:
break
break
...
@@ -226,18 +236,25 @@ def ner_net_infer(data_reader, parameters):
...
@@ -226,18 +236,25 @@ def ner_net_infer(data_reader, parameters):
lab_ids
=
paddle
.
infer
(
lab_ids
=
paddle
.
infer
(
output_layer
=
predict
,
output_layer
=
predict
,
parameters
=
pa
rameters
,
parameters
=
pa
ddle
.
parameters
.
Parameters
.
from_tar
(
gzip
.
open
(
model_file
))
,
input
=
test_data
,
input
=
test_data
,
field
=
'id'
)
field
=
'id'
)
'''words_reverse = {}
for (k, v) in word_dict.items():
words_reverse[v] = k
flat_data = [words_reverse[word_id] for word_id in itertools.chain.from_iterable(itertools.chain.from_iterable(test_data))]'''
flat_data
=
[
word
for
word
in
itertools
.
chain
.
from_iterable
(
test_sentences
)]
labels_reverse
=
{}
labels_reverse
=
{}
for
(
k
,
v
)
in
label_dict
.
items
():
for
(
k
,
v
)
in
label_dict
.
items
():
labels_reverse
[
v
]
=
k
labels_reverse
[
v
]
=
k
pre_lab
=
[
labels_reverse
[
lab_id
]
for
lab_id
in
lab_ids
]
pre_lab
=
[
labels_reverse
[
lab_id
]
for
lab_id
in
lab_ids
]
print
pre_lab
for
word
,
label
in
zip
(
flat_data
,
pre_lab
):
print
word
,
label
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
parameters
=
ner_net_train
(
train_data_reader
,
1
)
ner_net_train
(
num_passes
=
1
)
ner_net_infer
(
test_data_reader
,
parameters
)
ner_net_infer
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录