DNN与CNN模型之间最大的区别在于,CNN模型中存在卷积结构,而DNN大多使用基本的全连接结构。这使得CNN模型可以对语料信息中相邻单词组成的短语进行分析。例如,"The apple is not bad",其中的"not bad"是决定这个句子情感的关键。对于DNN模型来说,只能感知到句子中有一个"not"和一个"bad",而CNN模型则可能直接感知到"not bad"这个关键词组。因此,在大多数文本分类任务上,CNN模型的表现要好于DNN。
-**embedding层**:与DNN中embedding的作用一样,将英文单词转化为固定维度的向量。如图2中所示,将embedding得到的词向量定义为行向量,再将语料中所有的单词产生的行向量拼接在一起组成矩阵。假设embedding_size=5,语料“The cat sat on the read mat”包含7个单词,那么得到的矩阵维度为7*5。
-**词向量层**:与DNN中词向量层的作用一样,将英文单词转化为固定维度的向量。如图2中所示,将得到的词向量定义为行向量,再将语料中所有的单词产生的行向量拼接在一起组成矩阵。假设词向量维度为5,语料“The cat sat on the read mat”包含7个单词,那么得到的矩阵维度为7*5。