提交 1cf74fc3 编写于 作者: zhaoyijin666's avatar zhaoyijin666

readme

上级 65001741
...@@ -269,13 +269,19 @@ python infer.py --infer_set_path='./data/infer.txt' \ ...@@ -269,13 +269,19 @@ python infer.py --infer_set_path='./data/infer.txt' \
``` ```
## 在线预测 ## 在线预测
在线预测的时候,我们采用近似最近邻(approximate nearest neighbor-ANN)算法直接用用户向量查询最相关的topN个视频内容。由于我们的ANN暂时只支持cosine,而模型是根据内积排序的,两者效果差异太大。 在线预测的时候,我们采用近似最近邻(approximate nearest neighbor-ANN)算法直接用用户向量查询最相关的topN个视频内容。由于我们的ANN暂时只支持cosine,而模型是根据内积排序的,两者效果差异太大。
为此,我们的解决方案是,对用户和视频向量,作SIMPLE-LSH变换\[[4](#参考文献)\],使内积排序与cosin排序等价。具体如下:
为此,我们的解决方案是,对用户和视频向量,作SIMPLE-LSH变换\[[4](#参考文献)\],使内积排序与cosin排序等价。
具体如下:
对于视频向量$$\mathbf{v}\in \mathbb{R}^N$$,有$$\left \| \mathbf{v} \right \|\leqslant m$$,变换后的$$\tilde{\mathbf{v}}\in \mathbb{R}^{N+1}$$, 对于视频向量$$\mathbf{v}\in \mathbb{R}^N$$,有$$\left \| \mathbf{v} \right \|\leqslant m$$,变换后的$$\tilde{\mathbf{v}}\in \mathbb{R}^{N+1}$$,
$$\tilde{\mathbf{v}} = [\frac{\mathbf{v}}{m}; \sqrt{1 -\left \| \mathbf{\frac{\mathbf{v}}{m}{}} \right \|^2}]$$ $$\tilde{\mathbf{v}} = [\frac{\mathbf{v}}{m}; \sqrt{1 -\left \| \mathbf{\frac{\mathbf{v}}{m}{}} \right \|^2}]$$
对于用户向量$$\mathbf{u}\in \mathbb{R}^N$$,变换后的$$\tilde{\mathbf{u}}\in \mathbb{R}^{N+1}$$, 对于用户向量$$\mathbf{u}\in \mathbb{R}^N$$,变换后的$$\tilde{\mathbf{u}}\in \mathbb{R}^{N+1}$$,
$$\tilde{\mathbf{u}} = [\mathbf{u}_{norm}; 0]$$,其中$$\mathbf{u}_{norm}$$是模长归一化后的$$\mathbf{u}$$, $$\tilde{\mathbf{u}} = [\mathbf{u}_{norm}; 0]$$,其中$$\mathbf{u}_{norm}$$是模长归一化后的$$\mathbf{u}$$,
线上对于一个$$\mathbf{u}$$用内积召回$$\mathbf{v},作上述变换$$\mathbf{u}\rightarrow \tilde{\mathbf{u}}, \mathbf{v}\rightarrow \tilde{\mathbf{v}}$$后,不改变内积排序的顺序。又因为$$\left \| \tilde{\mathbf{u}} \right \|$$和$$\left \| \tilde{\mathbf{v}} \right \|$$都为1,因此$$cos(\tilde{\mathbf{u}} ,\tilde{\mathbf{v}}) = \tilde{\mathbf{u}}\cdot \tilde{\mathbf{v}}$$,就可以兼容ANN用cosin的方式召回了,结果等价。线上使用时,为保留精度,可以不除以$$$m$$,也就变成$\tilde{\mathbf{v}} = [\mathbf{v}; \sqrt{m^2 -\left \| \mathbf{\mathbf{v}} \right \|^2}]$$,排序依然等价。
线上对于一个$$\mathbf{u}$$用内积召回$$\mathbf{v},作上述变换$$\mathbf{u}\rightarrow \tilde{\mathbf{u}}, \mathbf{v}\rightarrow \tilde{\mathbf{v}}$$后,不改变内积排序的顺序。又因为$$\left \| \tilde{\mathbf{u}} \right \|$$和$$\left \| \tilde{\mathbf{v}} \right \|$$都为1,因此$$cos(\tilde{\mathbf{u}} ,\tilde{\mathbf{v}}) = \tilde{\mathbf{u}}\cdot \tilde{\mathbf{v}}$$,就可以兼容ANN用cosin的方式召回了,结果等价。
线上使用时,为保留精度,可以不除以$$$m$$,也就变成$\tilde{\mathbf{v}} = [\mathbf{v}; \sqrt{m^2 -\left \| \mathbf{\mathbf{v}} \right \|^2}]$$,排序依然等价。
## 参考文献 ## 参考文献
......
...@@ -254,14 +254,19 @@ python infer.py --infer_set_path='./data/infer.txt' \ ...@@ -254,14 +254,19 @@ python infer.py --infer_set_path='./data/infer.txt' \
``` ```
## Online prediction ## Online prediction
For online prediction,we adopt Approximate Nearest Neighbor(ANN) to directly recall top N mostly likely watch video. However, our ANN system currently only supports cosin sorting, not by inner product sorting, which leads to big effect difference. For online prediction,we adopt Approximate Nearest Neighbor(ANN) to directly recall top N most likely watch video. However, our ANN system currently only supports cosin sorting, not by inner product sorting, which leads to big effect difference.
As a result, we sliently modify user and video vectors by a SIMPLE-LSH conversion\[[4](#References)\], so that inner sorting is equivalent to cosin sorting after conversion. As a result, we sliently modify user and video vectors by a SIMPLE-LSH conversion\[[4](#References)\], so that inner sorting is equivalent to cosin sorting after conversion.
Details as follows: Details as follows:
For video vector, $$\mathbf{v}\in \mathbb{R}^N$$, we have $$\left \| \mathbf{v} \right \|\leqslant m$$. The modified video vector $$\tilde{\mathbf{v}}\in \mathbb{R}^{N+1}$$, For video vector, $$\mathbf{v}\in \mathbb{R}^N$$, we have $$\left \| \mathbf{v} \right \|\leqslant m$$. The modified video vector $$\tilde{\mathbf{v}}\in \mathbb{R}^{N+1}$$,
$$\tilde{\mathbf{v}} = [\frac{\mathbf{v}}{m}; \sqrt{1 -\left \| \mathbf{\frac{\mathbf{v}}{m}{}} \right \|^2}]$$ $$\tilde{\mathbf{v}} = [\frac{\mathbf{v}}{m}; \sqrt{1 -\left \| \mathbf{\frac{\mathbf{v}}{m}{}} \right \|^2}]$$
For user vector, $$\mathbf{u}\in \mathbb{R}^N$$, The modified user vector $$\tilde{\mathbf{u}}\in \mathbb{R}^{N+1}$$, For user vector, $$\mathbf{u}\in \mathbb{R}^N$$, The modified user vector $$\tilde{\mathbf{u}}\in \mathbb{R}^{N+1}$$,
$$\tilde{\mathbf{u}} = [\mathbf{u}_{norm}; 0]$$,in which $$\mathbf{u}_{norm}$$ is normalized $$\mathbf{u}$$, $$\tilde{\mathbf{u}} = [\mathbf{u}_{norm}; 0]$$,in which $$\mathbf{u}_{norm}$$ is normalized $$\mathbf{u}$$.
When online predicting, For a $$\mathbf{u}$$, we need recall $$\mathbf{v} by inner product sorting. After conversion, $$\mathbf{u}\rightarrow \tilde{\mathbf{u}}, \mathbf{v}\rightarrow \tilde{\mathbf{v}}$$, the order of inner prodct sorting is unchanged. Since $$\left \| \tilde{\mathbf{u}} \right \|$$ and $$\left \| \tilde{\mathbf{v}} \right \|$$ are both equal to 1, $$cos(\tilde{\mathbf{u}} ,\tilde{\mathbf{v}}) = \tilde{\mathbf{u}}\cdot \tilde{\mathbf{v}}$$, which makes cosin-supported-only ANN system works. And in order to retain precision, we find that $\tilde{\mathbf{v}} = [\mathbf{v}; \sqrt{m^2 -\left \| \mathbf{\mathbf{v}} \right \|^2}]$$ is also equivalent.
When online predicting, For a $$\mathbf{u}$$, we need recall $$\mathbf{v} by inner product sorting. After conversion, $$\mathbf{u}\rightarrow \tilde{\mathbf{u}}, \mathbf{v}\rightarrow \tilde{\mathbf{v}}$$, the order of inner prodct sorting is unchanged. Since $$\left \| \tilde{\mathbf{u}} \right \|$$ and $$\left \| \tilde{\mathbf{v}} \right \|$$ are both equal to 1, $$cos(\tilde{\mathbf{u}} ,\tilde{\mathbf{v}}) = \tilde{\mathbf{u}}\cdot \tilde{\mathbf{v}}$$, which makes cosin-supported-only ANN system works.
And in order to retain precision, we find that $\tilde{\mathbf{v}} = [\mathbf{v}; \sqrt{m^2 -\left \| \mathbf{\mathbf{v}} \right \|^2}]$$ is also equivalent.
## References ## References
1. Covington, Paul, Jay Adams, and Emre Sargin. "Deep neural networks for youtube recommendations." Proceedings of the 10th ACM Conference on Recommender Systems. ACM, 2016. 1. Covington, Paul, Jay Adams, and Emre Sargin. "Deep neural networks for youtube recommendations." Proceedings of the 10th ACM Conference on Recommender Systems. ACM, 2016.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册