提交 1b7e0449 编写于 作者: Y Yibing Liu

Adapt the decoder to the new label

上级 b6c505b8
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "post_decode_faster.h"
typedef kaldi::int32 int32;
using fst::SymbolTable;
using fst::VectorFst;
using fst::StdArc;
Decoder::Decoder(std::string word_syms_filename,
std::string fst_in_filename,
std::string logprior_rxfilename,
kaldi::BaseFloat acoustic_scale) {
const char* usage =
"Decode, reading log-likelihoods (of transition-ids or whatever symbol "
"is on the graph) as matrices.";
kaldi::ParseOptions po(usage);
binary = true;
this->acoustic_scale = acoustic_scale;
allow_partial = true;
kaldi::FasterDecoderOptions decoder_opts;
decoder_opts.Register(&po, true); // true == include obscure settings.
po.Register("binary", &binary, "Write output in binary mode");
po.Register("allow-partial",
&allow_partial,
"Produce output even when final state was not reached");
po.Register("acoustic-scale",
&acoustic_scale,
"Scaling factor for acoustic likelihoods");
word_syms = NULL;
if (word_syms_filename != "") {
word_syms = fst::SymbolTable::ReadText(word_syms_filename);
if (!word_syms)
KALDI_ERR << "Could not read symbol table from file "
<< word_syms_filename;
}
std::ifstream is_logprior(logprior_rxfilename);
logprior.Read(is_logprior, false);
// It's important that we initialize decode_fst after loglikes_reader, as it
// can prevent crashes on systems installed without enough virtual memory.
// It has to do with what happens on UNIX systems if you call fork() on a
// large process: the page-table entries are duplicated, which requires a
// lot of virtual memory.
decode_fst = fst::ReadFstKaldi(fst_in_filename);
decoder = new kaldi::FasterDecoder(*decode_fst, decoder_opts);
}
Decoder::~Decoder() {
if (!word_syms) delete word_syms;
delete decode_fst;
delete decoder;
}
std::string Decoder::decode(
std::string key,
const std::vector<std::vector<kaldi::BaseFloat>>& log_probs) {
size_t num_frames = log_probs.size();
size_t dim_label = log_probs[0].size();
kaldi::Matrix<kaldi::BaseFloat> loglikes(
num_frames, dim_label, kaldi::kSetZero, kaldi::kStrideEqualNumCols);
for (size_t i = 0; i < num_frames; ++i) {
memcpy(loglikes.Data() + i * dim_label,
log_probs[i].data(),
sizeof(kaldi::BaseFloat) * dim_label);
}
return decode(key, loglikes);
}
std::vector<std::string> Decoder::decode(std::string posterior_rspecifier) {
kaldi::SequentialBaseFloatMatrixReader posterior_reader(posterior_rspecifier);
std::vector<std::string> decoding_results;
for (; !posterior_reader.Done(); posterior_reader.Next()) {
std::string key = posterior_reader.Key();
kaldi::Matrix<kaldi::BaseFloat> loglikes(posterior_reader.Value());
decoding_results.push_back(decode(key, loglikes));
}
return decoding_results;
}
std::string Decoder::decode(std::string key,
kaldi::Matrix<kaldi::BaseFloat>& loglikes) {
std::string decoding_result;
if (loglikes.NumRows() == 0) {
KALDI_WARN << "Zero-length utterance: " << key;
}
KALDI_ASSERT(loglikes.NumCols() == logprior.Dim());
loglikes.ApplyLog();
loglikes.AddVecToRows(-1.0, logprior);
kaldi::DecodableMatrixScaled decodable(loglikes, acoustic_scale);
decoder->Decode(&decodable);
VectorFst<kaldi::LatticeArc> decoded; // linear FST.
if ((allow_partial || decoder->ReachedFinal()) &&
decoder->GetBestPath(&decoded)) {
if (!decoder->ReachedFinal())
KALDI_WARN << "Decoder did not reach end-state, outputting partial "
"traceback.";
std::vector<int32> alignment;
std::vector<int32> words;
kaldi::LatticeWeight weight;
GetLinearSymbolSequence(decoded, &alignment, &words, &weight);
if (word_syms != NULL) {
for (size_t i = 0; i < words.size(); i++) {
std::string s = word_syms->Find(words[i]);
decoding_result += s;
if (s == "")
KALDI_ERR << "Word-id " << words[i] << " not in symbol table.";
}
}
}
return decoding_result;
}
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "post_latgen_faster_mapped.h"
using namespace kaldi;
typedef kaldi::int32 int32;
using fst::SymbolTable;
using fst::Fst;
using fst::StdArc;
Decoder::Decoder(std::string trans_model_in_filename,
std::string word_syms_filename,
std::string fst_in_filename,
std::string logprior_in_filename,
kaldi::BaseFloat acoustic_scale) {
const char *usage =
"Generate lattices using neural net model.\n"
"Usage: post-latgen-faster-mapped [options] <trans-model> "
"<fst-in|fsts-rspecifier> <logprior> <posts-rspecifier>"
" <lattice-wspecifier> [ <words-wspecifier> [<alignments-wspecifier>] "
"]\n";
ParseOptions po(usage);
allow_partial = false;
this->acoustic_scale = acoustic_scale;
LatticeFasterDecoderConfig config;
config.Register(&po);
int32 beam = 11;
po.Register("beam", &beam, "Beam size");
po.Register("acoustic-scale",
&acoustic_scale,
"Scaling factor for acoustic likelihoods");
po.Register("word-symbol-table",
&word_syms_filename,
"Symbol table for words [for debug output]");
po.Register("allow-partial",
&allow_partial,
"If true, produce output even if end state was not reached.");
// int argc = 2;
// char *argv[] = {"post-latgen-faster-mapped", "--beam=11"};
// po.Read(argc, argv);
std::ifstream is_logprior(logprior_in_filename);
logprior.Read(is_logprior, false);
{
bool binary;
Input ki(trans_model_in_filename, &binary);
this->trans_model.Read(ki.Stream(), binary);
}
this->determinize = config.determinize_lattice;
this->word_syms = NULL;
if (word_syms_filename != "") {
if (!(word_syms = fst::SymbolTable::ReadText(word_syms_filename))) {
KALDI_ERR << "Could not read symbol table from file "
<< word_syms_filename;
}
}
// Input FST is just one FST, not a table of FSTs.
this->decode_fst = fst::ReadFstKaldiGeneric(fst_in_filename);
this->decoder = new LatticeFasterDecoder(*decode_fst, config);
std::string lattice_wspecifier =
"ark:|gzip -c > mapped_decoder_data/lat.JOB.gz";
if (!(determinize ? compact_lattice_writer.Open(lattice_wspecifier)
: lattice_writer.Open(lattice_wspecifier)))
KALDI_ERR << "Could not open table for writing lattices: ";
// << lattice_wspecifier;
words_writer = new Int32VectorWriter("");
alignment_writer = new Int32VectorWriter("");
}
Decoder::~Decoder() {
if (!this->word_syms) delete this->word_syms;
delete this->decode_fst;
delete this->decoder;
delete words_writer;
delete alignment_writer;
}
std::string Decoder::decode(std::string key,
kaldi::Matrix<kaldi::BaseFloat> &loglikes) {
std::string decoding_result;
if (loglikes.NumRows() == 0) {
KALDI_WARN << "Zero-length utterance: " << key;
// num_fail++;
}
KALDI_ASSERT(loglikes.NumCols() == logprior.Dim());
loglikes.ApplyLog();
loglikes.AddVecToRows(-1.0, logprior);
DecodableMatrixScaledMapped matrix_decodable(
trans_model, loglikes, acoustic_scale);
double like;
if (DecodeUtteranceLatticeFaster(*decoder,
matrix_decodable,
trans_model,
word_syms,
key,
acoustic_scale,
determinize,
allow_partial,
alignment_writer,
words_writer,
&compact_lattice_writer,
&lattice_writer,
&like)) {
// tot_like += like;
// frame_count += loglikes.NumRows();
// num_success++;
decoding_result = "succeed!";
} else { // else num_fail++;
decoding_result = "fail!";
}
return decoding_result;
}
std::vector<std::string> Decoder::decode(std::string posterior_rspecifier) {
std::vector<std::string> ret;
try {
double tot_like = 0.0;
kaldi::int64 frame_count = 0;
// int num_success = 0, num_fail = 0;
KALDI_ASSERT(ClassifyRspecifier(fst_in_filename, NULL, NULL) ==
kNoRspecifier);
SequentialBaseFloatMatrixReader posterior_reader("ark:" +
posterior_rspecifier);
Timer timer;
timer.Reset();
{
for (; !posterior_reader.Done(); posterior_reader.Next()) {
std::string utt = posterior_reader.Key();
Matrix<BaseFloat> &loglikes(posterior_reader.Value());
KALDI_LOG << utt << " " << loglikes.NumRows() << " x "
<< loglikes.NumCols();
ret.push_back(decode(utt, loglikes));
}
}
double elapsed = timer.Elapsed();
return ret;
} catch (const std::exception &e) {
std::cerr << e.what();
// ret.push_back("error");
return ret;
}
}
......@@ -17,19 +17,18 @@ limitations under the License. */
#include "base/kaldi-common.h"
#include "base/timer.h"
#include "decoder/decodable-matrix.h"
#include "decoder/faster-decoder.h"
#include "fstext/fstext-lib.h"
#include "decoder/decoder-wrappers.h"
#include "fstext/kaldi-fst-io.h"
#include "hmm/transition-model.h"
#include "lat/kaldi-lattice.h" // for {Compact}LatticeArc
#include "tree/context-dep.h"
#include "util/common-utils.h"
class Decoder {
public:
Decoder(std::string word_syms_filename,
Decoder(std::string trans_model_in_filename,
std::string word_syms_filename,
std::string fst_in_filename,
std::string logprior_rxfilename,
std::string logprior_in_filename,
kaldi::BaseFloat acoustic_scale);
~Decoder();
......@@ -48,11 +47,18 @@ private:
kaldi::Matrix<kaldi::BaseFloat> &loglikes);
fst::SymbolTable *word_syms;
fst::VectorFst<fst::StdArc> *decode_fst;
kaldi::FasterDecoder *decoder;
fst::Fst<fst::StdArc> *decode_fst;
kaldi::LatticeFasterDecoder *decoder;
kaldi::Vector<kaldi::BaseFloat> logprior;
kaldi::TransitionModel trans_model;
kaldi::CompactLatticeWriter compact_lattice_writer;
kaldi::LatticeWriter lattice_writer;
kaldi::Int32VectorWriter *words_writer;
kaldi::Int32VectorWriter *alignment_writer;
bool binary;
bool determinize;
kaldi::BaseFloat acoustic_scale;
bool allow_partial;
};
......@@ -15,15 +15,19 @@ limitations under the License. */
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include "post_decode_faster.h"
#include "post_latgen_faster_mapped.h"
namespace py = pybind11;
PYBIND11_MODULE(post_decode_faster, m) {
PYBIND11_MODULE(post_latgen_faster_mapped, m) {
m.doc() = "Decoder for Deep ASR model";
py::class_<Decoder>(m, "Decoder")
.def(py::init<std::string, std::string, std::string, kaldi::BaseFloat>())
.def(py::init<std::string,
std::string,
std::string,
std::string,
kaldi::BaseFloat>())
.def("decode",
(std::vector<std::string> (Decoder::*)(std::string)) &
Decoder::decode,
......
......@@ -49,8 +49,8 @@ LIB_DIRS = [os.path.abspath(path) for path in LIB_DIRS]
ext_modules = [
Extension(
'post_decode_faster',
['pybind.cc', 'post_decode_faster.cc'],
'post_latgen_faster_mapped',
['pybind.cc', 'post_latgen_faster_mapped.cc'],
include_dirs=[
'pybind11/include', '.', os.path.join(kaldi_root, 'src'),
os.path.join(kaldi_root, 'tools/openfst/src/include')
......@@ -63,8 +63,8 @@ ext_modules = [
]
setup(
name='post_decode_faster',
version='0.0.1',
name='post_latgen_faster_mapped',
version='0.1.0',
author='Paddle',
author_email='',
description='Decoder for Deep ASR model',
......
......@@ -14,7 +14,7 @@ import data_utils.augmentor.trans_add_delta as trans_add_delta
import data_utils.augmentor.trans_splice as trans_splice
import data_utils.augmentor.trans_delay as trans_delay
import data_utils.async_data_reader as reader
from decoder.post_decode_faster import Decoder
from decoder.post_latgen_faster_mapped import Decoder
from data_utils.util import lodtensor_to_ndarray
from model_utils.model import stacked_lstmp_model
from data_utils.util import split_infer_result
......@@ -98,20 +98,25 @@ def parse_args():
type=str,
default='./checkpoint',
help="The checkpoint path to init model. (default: %(default)s)")
parser.add_argument(
'--trans_model',
type=str,
default='./graph/trans_model',
help="The path to vocabulary. (default: %(default)s)")
parser.add_argument(
'--vocabulary',
type=str,
default='./decoder/graph/words.txt',
default='./graph/words.txt',
help="The path to vocabulary. (default: %(default)s)")
parser.add_argument(
'--graphs',
type=str,
default='./decoder/graph/TLG.fst',
default='./graph/TLG.fst',
help="The path to TLG graphs for decoding. (default: %(default)s)")
parser.add_argument(
'--log_prior',
type=str,
default="./decoder/logprior",
default="./logprior",
help="The log prior probs for training data. (default: %(default)s)")
parser.add_argument(
'--acoustic_scale',
......@@ -123,6 +128,11 @@ def parse_args():
type=str,
default="./decoder/target_trans.txt",
help="The path to target transcription. (default: %(default)s)")
parser.add_argument(
'--post_matrix_path',
type=str,
default=None,
help="The path to output post prob matrix. (default: %(default)s)")
args = parser.parse_args()
return args
......@@ -146,6 +156,16 @@ def get_trg_trans(args):
return trans_dict
def out_post_matrix(key, prob):
with open(args.post_matrix_path, "a") as post_matrix:
post_matrix.write(key + " [\n")
for i in range(prob.shape[0]):
for j in range(prob.shape[1]):
post_matrix.write(str(prob[i][j]) + " ")
post_matrix.write("\n")
post_matrix.write("]\n")
def infer_from_ckpt(args):
"""Inference by using checkpoint."""
......@@ -174,13 +194,13 @@ def infer_from_ckpt(args):
fluid.io.load_persistables(exe, args.checkpoint)
# init decoder
decoder = Decoder(args.vocabulary, args.graphs, args.log_prior,
args.acoustic_scale)
decoder = Decoder(args.trans_model, args.vocabulary, args.graphs,
args.log_prior, args.acoustic_scale)
ltrans = [
trans_add_delta.TransAddDelta(2, 2),
trans_mean_variance_norm.TransMeanVarianceNorm(args.mean_var),
trans_splice.TransSplice(), trans_delay.TransDelay(5)
trans_splice.TransSplice(5, 5), trans_delay.TransDelay(5)
]
feature_t = fluid.LoDTensor()
......@@ -197,6 +217,8 @@ def infer_from_ckpt(args):
args.minimum_batch_size)):
# load_data
(features, labels, lod, name_lst) = batch_data
features = np.reshape(features, (-1, 11, 3, args.frame_dim))
features = np.transpose(features, (0, 2, 1, 3))
feature_t.set(features, place)
feature_t.set_lod([lod])
label_t.set(labels, place)
......@@ -216,6 +238,9 @@ def infer_from_ckpt(args):
for index, sample in enumerate(infer_batch):
key = name_lst[index]
ref = trg_trans[key]
if args.post_matrix_path is not None:
out_post_matrix(key, sample)
'''
hyp = decoder.decode(key, sample)
edit_dist, ref_len = char_errors(ref.decode("utf8"), hyp)
total_edit_dist += edit_dist
......@@ -223,6 +248,8 @@ def infer_from_ckpt(args):
print(key + "|Ref:", ref)
print(key + "|Hyp:", hyp.encode("utf8"))
print("Instance CER: ", edit_dist / ref_len)
'''
print("batch: ", batch_id)
print("Total CER = %f" % (total_edit_dist / total_ref_len))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册