提交 18a0bbe8 编写于 作者: J JiabinYang

remove is_local for preprocess

上级 fc4fe627
......@@ -23,7 +23,7 @@ cd data && ./download.sh && cd ..
对数据进行预处理以生成一个词典。
```bash
python preprocess.py --data_path ./data/1-billion-word-language-modeling-benchmark-r13output/training-monolingual.tokenized.shuffled --dict_path data/1-billion_dict --is_local
python preprocess.py --data_path ./data/1-billion-word-language-modeling-benchmark-r13output/training-monolingual.tokenized.shuffled --dict_path data/1-billion_dict
```
如果您想使用自定义的词典形如:
```bash
......
......@@ -29,9 +29,16 @@ This model implement a skip-gram model of word2vector.
Preprocess the training data to generate a word dict.
```bash
python preprocess.py --data_path ./data/1-billion-word-language-modeling-benchmark-r13output/training-monolingual.tokenized.shuffled --is_local --dict_path data/1-billion_dict
python preprocess.py --data_path ./data/1-billion-word-language-modeling-benchmark-r13output/training-monolingual.tokenized.shuffled --dict_path data/1-billion_dict
```
if you would like to use our supported third party vocab, please set --other_dict_path as the directory of where you
if you would like to use your own vocab follow the format below:
```bash
<UNK>
a
b
c
```
Then, please set --other_dict_path as the directory of where you
save the vocab you will use and set --with_other_dict flag on to using it.
## Train
......
......@@ -27,12 +27,6 @@ def parse_args():
type=int,
default=5,
help="If the word count is less then freq, it will be removed from dict")
parser.add_argument(
'--is_local',
action='store_true',
required=False,
default=False,
help='Local train or not, (default: False)')
parser.add_argument(
'--with_other_dict',
......@@ -203,28 +197,27 @@ def preprocess(args):
for line in f:
word_count[native_to_unicode(line.strip())] = 1
if args.is_local:
for i in range(1, 100):
with io.open(
args.data_path + "/news.en-000{:0>2d}-of-00100".format(i),
encoding='utf-8') as f:
for line in f:
if args.with_other_dict:
line = strip_lines(line)
words = line.split()
for item in words:
if item in word_count:
word_count[item] = word_count[item] + 1
else:
word_count[native_to_unicode('<UNK>')] += 1
else:
line = text_strip(line)
words = line.split()
for item in words:
if item in word_count:
word_count[item] = word_count[item] + 1
else:
word_count[item] = 1
for i in range(1, 100):
with io.open(
args.data_path + "/news.en-000{:0>2d}-of-00100".format(i),
encoding='utf-8') as f:
for line in f:
if args.with_other_dict:
line = strip_lines(line)
words = line.split()
for item in words:
if item in word_count:
word_count[item] = word_count[item] + 1
else:
word_count[native_to_unicode('<UNK>')] += 1
else:
line = text_strip(line)
words = line.split()
for item in words:
if item in word_count:
word_count[item] = word_count[item] + 1
else:
word_count[item] = 1
item_to_remove = []
for item in word_count:
if word_count[item] <= args.freq:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册