Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
1738700e
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1738700e
编写于
6月 12, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine audio_data_utils.py
上级
1a319fbf
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
31 addition
and
37 deletion
+31
-37
deep_speech_2/audio_data_utils.py
deep_speech_2/audio_data_utils.py
+31
-37
未找到文件。
deep_speech_2/audio_data_utils.py
浏览文件 @
1738700e
...
...
@@ -247,22 +247,25 @@ class DataGenerator(object):
new_batch
.
append
((
padded_audio
,
text
))
return
new_batch
def
__batch_shuffle__
(
self
,
manifest
,
batch_size
):
def
__batch_shuffle__
(
self
,
manifest
,
batch_s
huffle_s
ize
):
"""
1. Sort the audio clips by duration.
2. Generate a random number `k`, k in [0, batch_size).
2. Generate a random number `k`, k in [0, batch_s
huffle_s
ize).
3. Randomly remove `k` instances in order to make different mini-batches,
then make minibatches and each minibatch size is batch_size.
then make minibatches and each minibatch size is batch_s
huffle_s
ize.
4. Shuffle the minibatches.
:param manifest: manifest file.
:type manifest: list
:param batch_size: batch size.
:type batch_size: int
:param batch_shuffle_size: This size is uesed to generate a random number,
it usually equals to batch size.
:type batch_shuffle_size: int
:return: batch shuffled mainifest.
:rtype: list
"""
manifest
.
sort
(
key
=
lambda
x
:
x
[
"duration"
])
shift_len
=
self
.
__random__
.
randint
(
0
,
batch_size
-
1
)
batch_manifest
=
zip
(
*
[
iter
(
manifest
[
shift_len
:])]
*
batch_size
)
shift_len
=
self
.
__random__
.
randint
(
0
,
batch_s
huffle_s
ize
-
1
)
batch_manifest
=
zip
(
*
[
iter
(
manifest
[
shift_len
:])]
*
batch_s
huffle_s
ize
)
self
.
__random__
.
shuffle
(
batch_manifest
)
batch_manifest
=
list
(
sum
(
batch_manifest
,
()))
res_len
=
len
(
manifest
)
-
shift_len
-
len
(
batch_manifest
)
...
...
@@ -270,11 +273,7 @@ class DataGenerator(object):
batch_manifest
.
extend
(
manifest
[
0
:
shift_len
])
return
batch_manifest
def
instance_reader_creator
(
self
,
manifest_path
,
batch_size
,
sortagrad
=
True
,
shuffle
=
False
):
def
instance_reader_creator
(
self
,
manifest
):
"""
Instance reader creator for audio data. Creat a callable function to
produce instances of data.
...
...
@@ -282,35 +281,19 @@ class DataGenerator(object):
Instance: a tuple of a numpy ndarray of audio spectrogram and a list of
tokenized and indexed transcription text.
:param manifest_path: Filepath of manifest for audio clip files.
:type manifest_path: basestring
:param sortagrad: Sort the audio clips by duration in the first epoc
if set True.
:type sortagrad: bool
:param shuffle: Shuffle the audio clips if set True.
:type shuffle: bool
:param manifest: Filepath of manifest for audio clip files.
:type manifest: basestring
:return: Data reader function.
:rtype: callable
"""
def
reader
():
# read manifest
manifest
=
self
.
__read_manifest__
(
manifest_path
=
manifest_path
,
max_duration
=
self
.
__max_duration__
,
min_duration
=
self
.
__min_duration__
)
# sort (by duration) or shuffle manifest
if
self
.
__epoc__
==
0
and
sortagrad
:
manifest
.
sort
(
key
=
lambda
x
:
x
[
"duration"
])
elif
shuffle
:
manifest
=
self
.
__batch_shuffle__
(
manifest
,
batch_size
)
# extract spectrogram feature
for
instance
in
manifest
:
spectrogram
=
self
.
__audio_featurize__
(
instance
[
"audio_filepath"
])
transcript
=
self
.
__text_featurize__
(
instance
[
"text"
])
yield
(
spectrogram
,
transcript
)
self
.
__epoc__
+=
1
return
reader
...
...
@@ -320,7 +303,7 @@ class DataGenerator(object):
padding_to
=-
1
,
flatten
=
False
,
sortagrad
=
False
,
shuffle
=
False
):
batch_
shuffle
=
False
):
"""
Batch data reader creator for audio data. Creat a callable function to
produce batches of data.
...
...
@@ -343,18 +326,28 @@ class DataGenerator(object):
:param sortagrad: Sort the audio clips by duration in the first epoc
if set True.
:type sortagrad: bool
:param shuffle: Shuffle the audio clips if set True.
:type shuffle: bool
:param batch_shuffle: Shuffle the audio clips if set True. It is
not a thorough instance-wise shuffle,
but a specific batch-wise shuffle.
:type batch_shuffle: bool
:return: Batch reader function, producing batches of data when called.
:rtype: callable
"""
def
batch_reader
():
instance_reader
=
self
.
instance_reader_creator
(
# read manifest
manifest
=
self
.
__read_manifest__
(
manifest_path
=
manifest_path
,
batch_size
=
batch_size
,
sortagrad
=
sortagrad
,
shuffle
=
shuffle
)
max_duration
=
self
.
__max_duration__
,
min_duration
=
self
.
__min_duration__
)
# sort (by duration) or shuffle manifest
if
self
.
__epoc__
==
0
and
sortagrad
:
manifest
.
sort
(
key
=
lambda
x
:
x
[
"duration"
])
elif
batch_shuffle
:
manifest
=
self
.
__batch_shuffle__
(
manifest
,
batch_size
)
instance_reader
=
self
.
instance_reader_creator
(
manifest
)
batch
=
[]
for
instance
in
instance_reader
():
batch
.
append
(
instance
)
...
...
@@ -363,6 +356,7 @@ class DataGenerator(object):
batch
=
[]
if
len
(
batch
)
>
0
:
yield
self
.
__padding_batch__
(
batch
,
padding_to
,
flatten
)
self
.
__epoc__
+=
1
return
batch_reader
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录