提交 160e75b6 编写于 作者: Q qiuxuezhong

merge

......@@ -8,6 +8,11 @@ import axpy
import flatten
import argmax
import reshape
import roipooling
import priorbox
import permute
import detection_out
import normalize
#custom layer import ends
......
......@@ -4,11 +4,6 @@
from .register import register
def import_fluid():
import paddle.fluid as fluid
return fluid
def flatten_shape(input_shape, axis=1, end_axis=-1):
""" calculate the output shape of this layer using input shape
......@@ -28,7 +23,7 @@ def flatten_shape(input_shape, axis=1, end_axis=-1):
start_axis += len(input_shape)
if end_axis < 0:
end_axis += len(input_shape)
end_axis += len(input_shape) + 1
assert start_axis <= end_axis, 'invalid axis[%d] or end_axis[%d] params'\
% (start_axis, end_axis)
......@@ -52,18 +47,16 @@ def flatten_layer(input, name, axis=1, end_axis=-1):
Returns:
output (variable): output variable for this layer
"""
fluid = import_fluid()
import paddle.fluid as fluid
input_shape = list(input.shape)
dims = len(input_shape)
start_axis = axis if axis >= 0 else axis + dims
end_axis = end_axis if end_axis >= 0 else end_axis + dims
assert start_axis <= end_axis, 'invalid axis or end_axis params'
output_shape = input_shape[0:start_axis]
flat_sz = reduce(lambda a, b: a * b, input_shape[start_axis:end_axis])
output_shape += [flat_sz]
output_shape += input_shape[end_axis:-1]
if input_shape[0] == -1:
input_shape[0] = 1
output_shape = flatten_shape(input_shape, axis=axis, end_axis=end_axis)
output_shape[0] = -1
else:
output_shape = flatten_shape(input_shape, axis=axis, end_axis=end_axis)
output = fluid.layers.reshape(input, shape=output_shape, name=name)
......
......@@ -68,15 +68,23 @@ def reshape_shape(input_sp, shape, axis=0, num_axes=-1):
top_dim = shape['dim'][i]
if top_dim == 0:
copy_axes.append(i)
copy_axis_index = start_axis + i
output_shape[copy_axis_index] = input_shape[copy_axis_index]
elif top_dim == -1:
assert inferred_axis == -1, "[Reshape]new shape contains multiple -1 dims"
inferred_axis = i
else:
constant_count *= top_dim
if inferred_axis >= 0:
explicit_count = constant_count
explicit_count *= count(input_shape[0:start_axis])
explicit_count *= count(input_shape[end_axis:])
l = input_shape[0:start_axis]
if len(l) > 0:
explicit_count *= count(l)
l = input_shape[end_axis:]
if len(l) > 0:
explicit_count *= count(l)
for i in range(len(copy_axes)):
explicit_count *= output_shape[start_axis + copy_axes[i]]
......@@ -84,6 +92,7 @@ def reshape_shape(input_sp, shape, axis=0, num_axes=-1):
assert input_count % explicit_count == 0, "[Reshape]botom count[%d] "\
"must be divisible by product of the specified dimensions[%d] "\
% (input_count, explicit_count)
output_shape[start_axis + inferred_axis] = input_count / explicit_count
output_count = count(output_shape)
assert output_count == input_count, "[Reshape]output count[%d] must match input count[%d]" % (
......@@ -117,6 +126,7 @@ def reshape_layer(input, name, shape, axis=0, num_axes=-1):
output_shape = reshape_shape(input_shape, shape, axis, num_axes)
output = fluid.layers.reshape(input, shape=output_shape, name=name)
return output
......
......@@ -179,6 +179,9 @@ class LayerAdapter(object):
@property
def parameters(self):
name = NodeDispatch.get_handler_name(self.kind)
if self.kind.lower() == "normalize":
name = "norm"
name = '_'.join((name, 'param'))
try:
return getattr(self.layer, name)
......@@ -217,9 +220,25 @@ class LayerAdapter(object):
params.stride_w, params.stride, 1, default=1)
p_h = self.get_kernel_value(params.pad_h, params.pad, 0, default=0)
p_w = self.get_kernel_value(params.pad_w, params.pad, 1, default=0)
return KernelParameters(k_h, k_w, s_h, s_w, p_h, p_w)
KernelParameters = namedtuple('KernelParameters', [
'kernel_h', 'kernel_w', 'stride_h', 'stride_w', 'pad_h', 'pad_w'
])
dila_h = dila_w = 1
if self.kind in (NodeKind.Convolution, ):
dila_len = len(params.dilation)
if dila_len == 2:
dila_h = params.dilation[0]
dila_w = params.dilation[1]
elif dila_len == 1:
dila_h = dila_w = params.dilation[0]
else:
assert dila_len == 0, "invalid length[%s] of dilation in convolution" % (
dila_len)
return KernelParameters(k_h, k_w, s_h, s_w, p_h, p_w, dila_h, dila_w)
KernelParameters = namedtuple(
'KernelParameters',
[
'kernel_h', 'kernel_w', 'stride_h', 'stride_w', 'pad_h', 'pad_w',
'dila_h', 'dila_w'
], )
......@@ -91,7 +91,7 @@ class Network(object):
name = '%s_%s' % (op_name, param_name)
v = fluid.global_scope().find_var(name)
w = v.get_tensor()
w.set(data, place)
w.set(data.reshape(w.shape()), place)
except ValueError:
if not ignore_missing:
raise
......@@ -144,6 +144,7 @@ class Network(object):
relu=True,
relu_negative_slope=0.0,
padding=None,
dilation=1,
group=1,
biased=True):
if padding is None:
......@@ -173,6 +174,7 @@ class Network(object):
num_filters=c_o,
stride=[s_h, s_w],
padding=padding,
dilation=dilation,
groups=group,
param_attr=fluid.ParamAttr(name=prefix + "weights"),
bias_attr=fluid.ParamAttr(name=prefix + "biases"),
......
......@@ -9,21 +9,6 @@ from ..transformers import (DataInjector, DataReshaper, NodeRenamer,
from . import network
def get_padding_type(kernel_params, input_shape, output_shape):
'''Translates Caffe's numeric padding to one of ('SAME', 'VALID').
Caffe supports arbitrary padding values, while Paddle only
supports 'SAME' and 'VALID' modes. So, not all Caffe paddings
can be translated to Paddle. There are some subtleties to
how the padding edge-cases are handled. These are described here:
https://github.com/Yangqing/caffe2/blob/master/caffe2/proto/caffe2_legacy.proto
'''
k_h, k_w, s_h, s_w, p_h, p_w = kernel_params
if p_h > 0 or p_w > 0:
return [p_h, p_w]
else:
return None
class PaddleNode(object):
'''An intermediate representation for Paddle operations.'''
......@@ -78,10 +63,11 @@ class PaddleMapper(NodeMapper):
def get_kernel_params(self, node):
kernel_params = node.layer.kernel_parameters
input_shape = node.get_only_parent().output_shape
padding = get_padding_type(kernel_params, input_shape,
node.output_shape)
# Only emit the padding if it's not the default value.
padding = {'padding': padding} if padding is not None else {}
padding = [kernel_params.pad_h, kernel_params.pad_w]
if padding[0] == 0 and padding[1] == 0:
padding = {}
else:
padding = {'padding': padding}
return (kernel_params, padding)
def map_convolution(self, node):
......@@ -95,6 +81,10 @@ class PaddleMapper(NodeMapper):
kwargs['group'] = group
if not node.parameters.bias_term:
kwargs['biased'] = False
if kernel_params.dila_h != 1 or kernel_params.dila_w != 1:
kwargs['dilation'] = (kernel_params.dila_h, kernel_params.dila_w)
assert kernel_params.kernel_h == h
assert kernel_params.kernel_w == w
return MaybeActivated(node)(
......
......@@ -6,6 +6,8 @@ from .errors import KaffeError
Tensor4DShape = namedtuple('Tensor4DShape',
['batch_size', 'channels', 'height', 'width'])
Tensor3DShape = namedtuple('Tensor3DShape', ['batch_size', 'data1', 'data2'])
Tensor2DShape = namedtuple('Tensor2DShape', ['batch_size', 'data'])
ScalarShape = namedtuple('ScalarShape', ['batch_size'])
......@@ -14,6 +16,8 @@ ScalarShape = namedtuple('ScalarShape', ['batch_size'])
def make_tensor(batch_size, d1=None, d2=None, d3=None):
if d3 is not None:
return Tensor4DShape(batch_size, d1, d2, d3)
elif d1 is not None and d2 is not None:
return Tensor3DShape(batch_size, d1, d2)
elif d1 is not None and d2 is None:
return Tensor2DShape(batch_size, d1)
elif d1 is None and d2 is None and d3 is None:
......@@ -24,10 +28,14 @@ def make_tensor(batch_size, d1=None, d2=None, d3=None):
def get_filter_output_shape(i_h, i_w, params, round_func):
o_h = (i_h + 2 * params.pad_h - params.kernel_h
) / float(params.stride_h) + 1
o_w = (i_w + 2 * params.pad_w - params.kernel_w
) / float(params.stride_w) + 1
dila_h = getattr(params, 'dila_h', 1)
dila_w = getattr(params, 'dila_w', 1)
o_h = (i_h + 2 * params.pad_h -
(dila_h * (params.kernel_h - 1) + 1)) / float(params.stride_h) + 1
o_w = (i_w + 2 * params.pad_w -
(dila_w * (params.kernel_w - 1) + 1)) / float(params.stride_w) + 1
return (int(round_func(o_h)), int(round_func(o_w)))
......
......@@ -337,6 +337,8 @@ class ParameterNamer(object):
names = ('scale', )
if getattr(node.parameters, 'bias_term', False):
names = ('scale', 'offset')
elif node.kind == "Normalize":
names = ('scale', )
else:
warn('Unhandled parameters when naming this it[%s]' %
(node.kind))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册