Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
15728d04
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
15728d04
编写于
9月 16, 2017
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
expose param cutoff_top_n
上级
bb353632
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
35 addition
and
23 deletion
+35
-23
deep_speech_2/data_utils/featurizer/text_featurizer.py
deep_speech_2/data_utils/featurizer/text_featurizer.py
+0
-2
deep_speech_2/decoders/decoder_deprecated.py
deep_speech_2/decoders/decoder_deprecated.py
+8
-12
deep_speech_2/decoders/lm_scorer_deprecated.py
deep_speech_2/decoders/lm_scorer_deprecated.py
+1
-1
deep_speech_2/decoders/swig/ctc_decoders.cpp
deep_speech_2/decoders/swig/ctc_decoders.cpp
+1
-1
deep_speech_2/examples/librispeech/run_infer.sh
deep_speech_2/examples/librispeech/run_infer.sh
+1
-0
deep_speech_2/examples/librispeech/run_infer_golden.sh
deep_speech_2/examples/librispeech/run_infer_golden.sh
+1
-0
deep_speech_2/examples/librispeech/run_test_golden.sh
deep_speech_2/examples/librispeech/run_test_golden.sh
+1
-0
deep_speech_2/infer.py
deep_speech_2/infer.py
+7
-2
deep_speech_2/model_utils/model.py
deep_speech_2/model_utils/model.py
+8
-3
deep_speech_2/test.py
deep_speech_2/test.py
+7
-2
未找到文件。
deep_speech_2/data_utils/featurizer/text_featurizer.py
浏览文件 @
15728d04
...
...
@@ -22,8 +22,6 @@ class TextFeaturizer(object):
def
__init__
(
self
,
vocab_filepath
):
self
.
_vocab_dict
,
self
.
_vocab_list
=
self
.
_load_vocabulary_from_file
(
vocab_filepath
)
# from unicode to string
self
.
_vocab_list
=
[
chars
.
encode
(
"utf-8"
)
for
chars
in
self
.
_vocab_list
]
def
featurize
(
self
,
text
):
"""Convert text string to a list of token indices in char-level.Note
...
...
deep_speech_2/decoders/decoder_deprecated.py
浏览文件 @
15728d04
...
...
@@ -42,8 +42,8 @@ def ctc_greedy_decoder(probs_seq, vocabulary):
def
ctc_beam_search_decoder
(
probs_seq
,
beam_size
,
vocabulary
,
blank_id
,
cutoff_prob
=
1.0
,
cutoff_top_n
=
40
,
ext_scoring_func
=
None
,
nproc
=
False
):
"""CTC Beam search decoder.
...
...
@@ -66,8 +66,6 @@ def ctc_beam_search_decoder(probs_seq,
:type beam_size: int
:param vocabulary: Vocabulary list.
:type vocabulary: list
:param blank_id: ID of blank.
:type blank_id: int
:param cutoff_prob: Cutoff probability in pruning,
default 1.0, no pruning.
:type cutoff_prob: float
...
...
@@ -87,9 +85,8 @@ def ctc_beam_search_decoder(probs_seq,
raise
ValueError
(
"The shape of prob_seq does not match with the "
"shape of the vocabulary."
)
# blank_id check
if
not
blank_id
<
len
(
probs_seq
[
0
]):
raise
ValueError
(
"blank_id shouldn't be greater than probs dimension"
)
# blank_id assign
blank_id
=
len
(
vocabulary
)
# If the decoder called in the multiprocesses, then use the global scorer
# instantiated in ctc_beam_search_decoder_batch().
...
...
@@ -114,7 +111,7 @@ def ctc_beam_search_decoder(probs_seq,
prob_idx
=
list
(
enumerate
(
probs_seq
[
time_step
]))
cutoff_len
=
len
(
prob_idx
)
#If pruning is enabled
if
cutoff_prob
<
1.0
:
if
cutoff_prob
<
1.0
or
cutoff_top_n
<
cutoff_len
:
prob_idx
=
sorted
(
prob_idx
,
key
=
lambda
asd
:
asd
[
1
],
reverse
=
True
)
cutoff_len
,
cum_prob
=
0
,
0.0
for
i
in
xrange
(
len
(
prob_idx
)):
...
...
@@ -122,6 +119,7 @@ def ctc_beam_search_decoder(probs_seq,
cutoff_len
+=
1
if
cum_prob
>=
cutoff_prob
:
break
cutoff_len
=
min
(
cutoff_top_n
,
cutoff_top_n
)
prob_idx
=
prob_idx
[
0
:
cutoff_len
]
for
l
in
prefix_set_prev
:
...
...
@@ -191,9 +189,9 @@ def ctc_beam_search_decoder(probs_seq,
def
ctc_beam_search_decoder_batch
(
probs_split
,
beam_size
,
vocabulary
,
blank_id
,
num_processes
,
cutoff_prob
=
1.0
,
cutoff_top_n
=
40
,
ext_scoring_func
=
None
):
"""CTC beam search decoder using multiple processes.
...
...
@@ -204,8 +202,6 @@ def ctc_beam_search_decoder_batch(probs_split,
:type beam_size: int
:param vocabulary: Vocabulary list.
:type vocabulary: list
:param blank_id: ID of blank.
:type blank_id: int
:param num_processes: Number of parallel processes.
:type num_processes: int
:param cutoff_prob: Cutoff probability in pruning,
...
...
@@ -232,8 +228,8 @@ def ctc_beam_search_decoder_batch(probs_split,
pool
=
multiprocessing
.
Pool
(
processes
=
num_processes
)
results
=
[]
for
i
,
probs_list
in
enumerate
(
probs_split
):
args
=
(
probs_list
,
beam_size
,
vocabulary
,
blank_id
,
cutoff_prob
,
None
,
nproc
)
args
=
(
probs_list
,
beam_size
,
vocabulary
,
blank_id
,
cutoff_prob
,
cutoff_top_n
,
None
,
nproc
)
results
.
append
(
pool
.
apply_async
(
ctc_beam_search_decoder
,
args
))
pool
.
close
()
...
...
deep_speech_2/decoders/lm_scorer_deprecated.py
浏览文件 @
15728d04
...
...
@@ -8,7 +8,7 @@ import kenlm
import
numpy
as
np
class
Lm
Scorer
(
object
):
class
Scorer
(
object
):
"""External scorer to evaluate a prefix or whole sentence in
beam search decoding, including the score from n-gram language
model and word count.
...
...
deep_speech_2/decoders/swig/ctc_decoders.cpp
浏览文件 @
15728d04
...
...
@@ -128,7 +128,7 @@ std::vector<std::pair<double, std::string>> ctc_beam_search_decoder(
// pruning of vacobulary
size_t
cutoff_len
=
prob
.
size
();
if
(
cutoff_prob
<
1.0
||
cutoff_top_n
<
prob
.
size
()
)
{
if
(
cutoff_prob
<
1.0
||
cutoff_top_n
<
cutoff_len
)
{
std
::
sort
(
prob_idx
.
begin
(),
prob_idx
.
end
(),
pair_comp_second_rev
<
int
,
double
>
);
if
(
cutoff_prob
<
1.0
)
{
...
...
deep_speech_2/examples/librispeech/run_infer.sh
浏览文件 @
15728d04
...
...
@@ -24,6 +24,7 @@ python -u infer.py \
--alpha
=
2.15
\
--beta
=
0.35
\
--cutoff_prob
=
1.0
\
--cutoff_top_n
=
40
\
--use_gru
=
False
\
--use_gpu
=
True
\
--share_rnn_weights
=
True
\
...
...
deep_speech_2/examples/librispeech/run_infer_golden.sh
浏览文件 @
15728d04
...
...
@@ -33,6 +33,7 @@ python -u infer.py \
--alpha
=
2.15
\
--beta
=
0.35
\
--cutoff_prob
=
1.0
\
--cutoff_top_n
=
40
\
--use_gru
=
False
\
--use_gpu
=
True
\
--share_rnn_weights
=
True
\
...
...
deep_speech_2/examples/librispeech/run_test_golden.sh
浏览文件 @
15728d04
...
...
@@ -34,6 +34,7 @@ python -u test.py \
--alpha
=
2.15
\
--beta
=
0.35
\
--cutoff_prob
=
1.0
\
--cutoff_top_n
=
40
\
--use_gru
=
False
\
--use_gpu
=
True
\
--share_rnn_weights
=
True
\
...
...
deep_speech_2/infer.py
浏览文件 @
15728d04
...
...
@@ -23,7 +23,8 @@ add_arg('num_rnn_layers', int, 3, "# of recurrent layers.")
add_arg
(
'rnn_layer_size'
,
int
,
2048
,
"# of recurrent cells per layer."
)
add_arg
(
'alpha'
,
float
,
2.15
,
"Coef of LM for beam search."
)
add_arg
(
'beta'
,
float
,
0.35
,
"Coef of WC for beam search."
)
add_arg
(
'cutoff_prob'
,
float
,
1.0
,
"Cutoff probability for pruning."
)
add_arg
(
'cutoff_prob'
,
float
,
1.0
,
"Cutoff probability for pruning."
)
add_arg
(
'cutoff_top_n'
,
int
,
40
,
"Cutoff number for pruning."
)
add_arg
(
'use_gru'
,
bool
,
False
,
"Use GRUs instead of simple RNNs."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Use GPU or not."
)
add_arg
(
'share_rnn_weights'
,
bool
,
True
,
"Share input-hidden weights across "
...
...
@@ -85,6 +86,9 @@ def infer():
pretrained_model_path
=
args
.
model_path
,
share_rnn_weights
=
args
.
share_rnn_weights
)
# decoders only accept string encoded in utf-8
vocab_list
=
[
chars
.
encode
(
"utf-8"
)
for
chars
in
data_generator
.
vocab_list
]
result_transcripts
=
ds2_model
.
infer_batch
(
infer_data
=
infer_data
,
decoding_method
=
args
.
decoding_method
,
...
...
@@ -92,7 +96,8 @@ def infer():
beam_beta
=
args
.
beta
,
beam_size
=
args
.
beam_size
,
cutoff_prob
=
args
.
cutoff_prob
,
vocab_list
=
data_generator
.
vocab_list
,
cutoff_top_n
=
args
.
cutoff_top_n
,
vocab_list
=
vocab_list
,
language_model_path
=
args
.
lang_model_path
,
num_processes
=
args
.
num_proc_bsearch
)
...
...
deep_speech_2/model_utils/model.py
浏览文件 @
15728d04
...
...
@@ -148,8 +148,8 @@ class DeepSpeech2Model(object):
return
self
.
_loss_inferer
.
infer
(
input
=
infer_data
)
def
infer_batch
(
self
,
infer_data
,
decoding_method
,
beam_alpha
,
beam_beta
,
beam_size
,
cutoff_prob
,
vocab_list
,
language_model_path
,
num_processes
):
beam_size
,
cutoff_prob
,
cutoff_top_n
,
vocab_list
,
language_model_path
,
num_processes
):
"""Model inference. Infer the transcription for a batch of speech
utterances.
...
...
@@ -169,6 +169,10 @@ class DeepSpeech2Model(object):
:param cutoff_prob: Cutoff probability in pruning,
default 1.0, no pruning.
:type cutoff_prob: float
:param cutoff_top_n: Cutoff number in pruning, only top cutoff_top_n
characters with highest probs in vocabulary will be
used in beam search, default 40.
:type cutoff_top_n: int
:param vocab_list: List of tokens in the vocabulary, for decoding.
:type vocab_list: list
:param language_model_path: Filepath for language model.
...
...
@@ -216,7 +220,8 @@ class DeepSpeech2Model(object):
beam_size
=
beam_size
,
num_processes
=
num_processes
,
ext_scoring_func
=
self
.
_ext_scorer
,
cutoff_prob
=
cutoff_prob
)
cutoff_prob
=
cutoff_prob
,
cutoff_top_n
=
cutoff_top_n
)
results
=
[
result
[
0
][
1
]
for
result
in
beam_search_results
]
else
:
...
...
deep_speech_2/test.py
浏览文件 @
15728d04
...
...
@@ -24,7 +24,8 @@ add_arg('num_rnn_layers', int, 3, "# of recurrent layers.")
add_arg
(
'rnn_layer_size'
,
int
,
2048
,
"# of recurrent cells per layer."
)
add_arg
(
'alpha'
,
float
,
2.15
,
"Coef of LM for beam search."
)
add_arg
(
'beta'
,
float
,
0.35
,
"Coef of WC for beam search."
)
add_arg
(
'cutoff_prob'
,
float
,
1.0
,
"Cutoff probability for pruning."
)
add_arg
(
'cutoff_prob'
,
float
,
1.0
,
"Cutoff probability for pruning."
)
add_arg
(
'cutoff_top_n'
,
int
,
40
,
"Cutoff number for pruning."
)
add_arg
(
'use_gru'
,
bool
,
False
,
"Use GRUs instead of simple RNNs."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Use GPU or not."
)
add_arg
(
'share_rnn_weights'
,
bool
,
True
,
"Share input-hidden weights across "
...
...
@@ -85,6 +86,9 @@ def evaluate():
pretrained_model_path
=
args
.
model_path
,
share_rnn_weights
=
args
.
share_rnn_weights
)
# decoders only accept string encoded in utf-8
vocab_list
=
[
chars
.
encode
(
"utf-8"
)
for
chars
in
data_generator
.
vocab_list
]
error_rate_func
=
cer
if
args
.
error_rate_type
==
'cer'
else
wer
error_sum
,
num_ins
=
0.0
,
0
for
infer_data
in
batch_reader
():
...
...
@@ -95,7 +99,8 @@ def evaluate():
beam_beta
=
args
.
beta
,
beam_size
=
args
.
beam_size
,
cutoff_prob
=
args
.
cutoff_prob
,
vocab_list
=
data_generator
.
vocab_list
,
cutoff_top_n
=
args
.
cutoff_top_n
,
vocab_list
=
vocab_list
,
language_model_path
=
args
.
lang_model_path
,
num_processes
=
args
.
num_proc_bsearch
)
target_transcripts
=
[
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录