Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
142a79fa
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
142a79fa
编写于
6月 07, 2017
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
code clean & add external scorer
上级
1e9ae323
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
205 addition
and
312 deletion
+205
-312
deep_speech_2/ctc_beam_search_decoder.py
deep_speech_2/ctc_beam_search_decoder.py
+0
-192
deep_speech_2/decoder.py
deep_speech_2/decoder.py
+157
-27
deep_speech_2/infer.py
deep_speech_2/infer.py
+48
-24
deep_speech_2/test_ctc_beam_search_decoder.py
deep_speech_2/test_ctc_beam_search_decoder.py
+0
-69
未找到文件。
deep_speech_2/ctc_beam_search_decoder.py
已删除
100644 → 0
浏览文件 @
1e9ae323
## This is a prototype of ctc beam search decoder
import
copy
import
random
import
numpy
as
np
# vocab = blank + space + English characters
#vocab = ['-', ' '] + [chr(i) for i in range(97, 123)]
vocab
=
[
'-'
,
'_'
,
'a'
]
def
ids_list2str
(
ids_list
):
ids_str
=
[
str
(
elem
)
for
elem
in
ids_list
]
ids_str
=
' '
.
join
(
ids_str
)
return
ids_str
def
ids_id2token
(
ids_list
):
ids_str
=
''
for
ids
in
ids_list
:
ids_str
+=
vocab
[
ids
]
return
ids_str
def
language_model
(
ids_list
,
vocabulary
):
# lookup ptb vocabulary
ptb_vocab_path
=
"./data/ptb_vocab.txt"
sentence
=
''
.
join
([
vocabulary
[
ids
]
for
ids
in
ids_list
])
words
=
sentence
.
split
(
' '
)
last_word
=
words
[
-
1
]
with
open
(
ptb_vocab_path
,
'r'
)
as
ptb_vocab
:
f
=
ptb_vocab
.
readline
()
while
f
:
if
f
==
last_word
:
return
1.0
f
=
ptb_vocab
.
readline
()
return
0.0
def
ctc_beam_search_decoder
(
input_probs_matrix
,
beam_size
,
vocabulary
,
max_time_steps
=
None
,
lang_model
=
language_model
,
alpha
=
1.0
,
beta
=
1.0
,
blank_id
=
0
,
space_id
=
1
,
num_results_per_sample
=
None
):
'''
Beam search decoder for CTC-trained network, adapted from Algorithm 1
in https://arxiv.org/abs/1408.2873.
:param input_probs_matrix: probs matrix for input sequence, row major
:type input_probs_matrix: 2D matrix.
:param beam_size: width for beam search
:type beam_size: int
:max_time_steps: maximum steps' number for input sequence,
<=len(input_probs_matrix)
:type max_time_steps: int
:lang_model: language model for scoring
:type lang_model: function
:param alpha: parameter associated with language model.
:type alpha: float
:param beta: parameter associated with word count
:type beta: float
:param blank_id: id of blank, default 0.
:type blank_id: int
:param space_id: id of space, default 1.
:type space_id: int
:param num_result_per_sample: the number of output decoding results
per given sample, <=beam_size.
:type num_result_per_sample: int
'''
# function to convert ids in string to list
def
ids_str2list
(
ids_str
):
ids_str
=
ids_str
.
split
(
' '
)
ids_list
=
[
int
(
elem
)
for
elem
in
ids_str
]
return
ids_list
# counting words in a character list
def
word_count
(
ids_list
):
cnt
=
0
for
elem
in
ids_list
:
if
elem
==
space_id
:
cnt
+=
1
return
cnt
if
num_results_per_sample
is
None
:
num_results_per_sample
=
beam_size
assert
num_results_per_sample
<=
beam_size
if
max_time_steps
is
None
:
max_time_steps
=
len
(
input_probs_matrix
)
else
:
max_time_steps
=
min
(
max_time_steps
,
len
(
input_probs_matrix
))
assert
max_time_steps
>
0
vocab_dim
=
len
(
input_probs_matrix
[
0
])
assert
blank_id
<
vocab_dim
assert
space_id
<
vocab_dim
## initialize
start_id
=
-
1
# the set containing selected prefixes
prefix_set_prev
=
{
str
(
start_id
):
1.0
}
probs_b
,
probs_nb
=
{
str
(
start_id
):
1.0
},
{
str
(
start_id
):
0.0
}
## extend prefix in loop
for
time_step
in
range
(
max_time_steps
):
# the set containing candidate prefixes
prefix_set_next
=
{}
probs_b_cur
,
probs_nb_cur
=
{},
{}
for
l
in
prefix_set_prev
:
prob
=
input_probs_matrix
[
time_step
]
# convert ids in string to list
ids_list
=
ids_str2list
(
l
)
end_id
=
ids_list
[
-
1
]
if
not
prefix_set_next
.
has_key
(
l
):
probs_b_cur
[
l
],
probs_nb_cur
[
l
]
=
0.0
,
0.0
# extend prefix by travering vocabulary
for
c
in
range
(
0
,
vocab_dim
):
if
c
==
blank_id
:
probs_b_cur
[
l
]
+=
prob
[
c
]
*
(
probs_b
[
l
]
+
probs_nb
[
l
])
else
:
l_plus
=
l
+
' '
+
str
(
c
)
if
not
prefix_set_next
.
has_key
(
l_plus
):
probs_b_cur
[
l_plus
],
probs_nb_cur
[
l_plus
]
=
0.0
,
0.0
if
c
==
end_id
:
probs_nb_cur
[
l_plus
]
+=
prob
[
c
]
*
probs_b
[
l
]
probs_nb_cur
[
l
]
+=
prob
[
c
]
*
probs_nb
[
l
]
elif
c
==
space_id
:
lm
=
1.0
if
lang_model
is
None
\
else
np
.
power
(
lang_model
(
ids_list
,
vocabulary
),
alpha
)
probs_nb_cur
[
l_plus
]
+=
lm
*
prob
[
c
]
*
(
probs_b
[
l
]
+
probs_nb
[
l
])
else
:
probs_nb_cur
[
l_plus
]
+=
prob
[
c
]
*
(
probs_b
[
l
]
+
probs_nb
[
l
])
# add l_plus into prefix_set_next
prefix_set_next
[
l_plus
]
=
probs_nb_cur
[
l_plus
]
+
probs_b_cur
[
l_plus
]
# add l into prefix_set_next
prefix_set_next
[
l
]
=
probs_b_cur
[
l
]
+
probs_nb_cur
[
l
]
# update probs
probs_b
,
probs_nb
=
copy
.
deepcopy
(
probs_b_cur
),
copy
.
deepcopy
(
probs_nb_cur
)
## store top beam_size prefixes
prefix_set_prev
=
sorted
(
prefix_set_next
.
iteritems
(),
key
=
lambda
asd
:
asd
[
1
],
reverse
=
True
)
if
beam_size
<
len
(
prefix_set_prev
):
prefix_set_prev
=
prefix_set_prev
[:
beam_size
]
prefix_set_prev
=
dict
(
prefix_set_prev
)
beam_result
=
[]
for
(
seq
,
prob
)
in
prefix_set_prev
.
items
():
if
prob
>
0.0
:
ids_list
=
ids_str2list
(
seq
)[
1
:]
result
=
''
.
join
([
vocabulary
[
ids
]
for
ids
in
ids_list
])
log_prob
=
np
.
log
(
prob
)
beam_result
.
append
([
log_prob
,
result
])
## output top beam_size decoding results
beam_result
=
sorted
(
beam_result
,
key
=
lambda
asd
:
asd
[
0
],
reverse
=
True
)
if
num_results_per_sample
<
beam_size
:
beam_result
=
beam_result
[:
num_results_per_sample
]
return
beam_result
def
simple_test
():
input_probs_matrix
=
[[
0.1
,
0.3
,
0.6
],
[
0.2
,
0.1
,
0.7
],
[
0.5
,
0.2
,
0.3
]]
beam_result
=
ctc_beam_search_decoder
(
input_probs_matrix
=
input_probs_matrix
,
beam_size
=
20
,
blank_id
=
0
,
space_id
=
1
,
)
print
"
\n
beam search output:"
for
result
in
beam_result
:
print
(
"%6f
\t
%s"
%
(
result
[
0
],
ids_id2token
(
result
[
1
])))
if
__name__
==
'__main__'
:
simple_test
()
deep_speech_2/decoder.py
浏览文件 @
142a79fa
...
@@ -4,7 +4,8 @@
...
@@ -4,7 +4,8 @@
from
itertools
import
groupby
from
itertools
import
groupby
import
numpy
as
np
import
numpy
as
np
from
ctc_beam_search_decoder
import
*
import
copy
import
kenlm
def
ctc_best_path_decode
(
probs_seq
,
vocabulary
):
def
ctc_best_path_decode
(
probs_seq
,
vocabulary
):
...
@@ -37,36 +38,165 @@ def ctc_best_path_decode(probs_seq, vocabulary):
...
@@ -37,36 +38,165 @@ def ctc_best_path_decode(probs_seq, vocabulary):
return
''
.
join
([
vocabulary
[
index
]
for
index
in
index_list
])
return
''
.
join
([
vocabulary
[
index
]
for
index
in
index_list
])
def
ctc_decode
(
probs_seq
,
class
Scorer
(
object
):
vocabulary
,
method
,
beam_size
=
None
,
num_results_per_sample
=
None
):
"""
"""
CTC-like sequence decoding from a sequence of likelihood probablilites.
External defined scorer to evaluate a sentence in beam search
decoding, consisting of language model and word count.
:param probs_seq: 2-D list of probabilities over the vocabulary for each
:param alpha: Parameter associated with language model.
character. Each element is a list of float probabilities
:type alpha: float
for one character.
:param beta: Parameter associated with word count.
:type probs_seq: list
:type beta: float
:model_path: Path to load language model.
:type model_path: basestring
"""
def
__init__
(
self
,
alpha
,
beta
,
model_path
):
self
.
_alpha
=
alpha
self
.
_beta
=
beta
self
.
_language_model
=
kenlm
.
LanguageModel
(
model_path
)
def
language_model_score
(
self
,
sentence
,
bos
=
True
,
eos
=
False
):
log_prob
=
self
.
_language_model
.
score
(
sentence
,
bos
,
eos
)
return
np
.
power
(
10
,
log_prob
)
def
word_count
(
self
,
sentence
):
words
=
sentence
.
strip
().
split
(
' '
)
return
len
(
words
)
# execute evaluation
def
evaluate
(
self
,
sentence
,
bos
=
True
,
eos
=
False
):
lm
=
self
.
language_model_score
(
sentence
,
bos
,
eos
)
word_count
=
self
.
word_count
(
sentence
)
score
=
np
.
power
(
lm
,
self
.
_alpha
)
\
*
np
.
power
(
word_count
,
self
.
_beta
)
return
score
def
ctc_beam_search_decoder
(
probs_seq
,
beam_size
,
vocabulary
,
ext_scoring_func
=
None
,
blank_id
=
0
):
'''
Beam search decoder for CTC-trained network, using beam search with width
beam_size to find many paths to one label, return beam_size labels in
the order of probabilities. The implementation is based on Prefix Beam
Search(https://arxiv.org/abs/1408.2873), and the unclear part is
redesigned, need to be verified.
:param probs_seq: 2-D list with length max_time_steps, each element
is a list of normalized probabilities over vocabulary
and blank for one time step.
:type probs_seq: 2-D list
:param beam_size: Width for beam search.
:type beam_size: int
:param vocabulary: Vocabulary list.
:param vocabulary: Vocabulary list.
:type vocabulary: list
:type vocabulary: list
:param method: Decoding method name, with options: "best_path".
:param ext_scoring_func: External defined scoring function for
:type method: basestring
partially decoded sentence, e.g. word count
:return: Decoding result string.
and language model.
:rtype: baseline
:type external_scoring_function: function
"""
:param blank_id: id of blank, default 0.
:type blank_id: int
:return: Decoding log probability and result string.
:rtype: list
'''
for
prob_list
in
probs_seq
:
for
prob_list
in
probs_seq
:
if
not
len
(
prob_list
)
==
len
(
vocabulary
)
+
1
:
if
not
len
(
prob_list
)
==
len
(
vocabulary
)
+
1
:
raise
ValueError
(
"probs dimension mismatchedd with vocabulary"
)
raise
ValueError
(
"probs dimension mismatchedd with vocabulary"
)
if
method
==
"best_path"
:
return
ctc_best_path_decode
(
probs_seq
,
vocabulary
)
max_time_steps
=
len
(
probs_seq
)
elif
method
==
"beam_search"
:
if
not
max_time_steps
>
0
:
return
ctc_beam_search_decoder
(
raise
ValueError
(
"probs_seq shouldn't be empty"
)
input_probs_matrix
=
probs_seq
,
vocabulary
=
vocabulary
,
probs_dim
=
len
(
probs_seq
[
0
])
beam_size
=
beam_size
,
if
not
blank_id
<
probs_dim
:
blank_id
=
len
(
vocabulary
),
raise
ValueError
(
"blank_id shouldn't be greater than probs dimension"
)
num_results_per_sample
=
num_results_per_sample
)
else
:
if
' '
not
in
vocabulary
:
raise
ValueError
(
"Decoding method [%s] is not supported."
%
method
)
raise
ValueError
(
"space doesn't exist in vocabulary"
)
space_id
=
vocabulary
.
index
(
' '
)
# function to convert ids in string to list
def
ids_str2list
(
ids_str
):
ids_str
=
ids_str
.
split
(
' '
)
ids_list
=
[
int
(
elem
)
for
elem
in
ids_str
]
return
ids_list
# function to convert ids list to sentence
def
ids2sentence
(
ids_list
,
vocab
):
return
''
.
join
([
vocab
[
ids
]
for
ids
in
ids_list
])
## initialize
# the set containing selected prefixes
prefix_set_prev
=
{
'-1'
:
1.0
}
probs_b
,
probs_nb
=
{
'-1'
:
1.0
},
{
'-1'
:
0.0
}
## extend prefix in loop
for
time_step
in
range
(
max_time_steps
):
# the set containing candidate prefixes
prefix_set_next
=
{}
probs_b_cur
,
probs_nb_cur
=
{},
{}
for
l
in
prefix_set_prev
:
prob
=
probs_seq
[
time_step
]
# convert ids in string to list
ids_list
=
ids_str2list
(
l
)
end_id
=
ids_list
[
-
1
]
if
not
prefix_set_next
.
has_key
(
l
):
probs_b_cur
[
l
],
probs_nb_cur
[
l
]
=
0.0
,
0.0
# extend prefix by travering vocabulary
for
c
in
range
(
0
,
probs_dim
):
if
c
==
blank_id
:
probs_b_cur
[
l
]
+=
prob
[
c
]
*
(
probs_b
[
l
]
+
probs_nb
[
l
])
else
:
l_plus
=
l
+
' '
+
str
(
c
)
if
not
prefix_set_next
.
has_key
(
l_plus
):
probs_b_cur
[
l_plus
],
probs_nb_cur
[
l_plus
]
=
0.0
,
0.0
if
c
==
end_id
:
probs_nb_cur
[
l_plus
]
+=
prob
[
c
]
*
probs_b
[
l
]
probs_nb_cur
[
l
]
+=
prob
[
c
]
*
probs_nb
[
l
]
elif
c
==
space_id
:
if
ext_scoring_func
is
None
:
score
=
1.0
else
:
prefix_sent
=
ids2sentence
(
ids_list
,
vocabulary
)
score
=
ext_scoring_func
(
prefix_sent
)
probs_nb_cur
[
l_plus
]
+=
score
*
prob
[
c
]
*
(
probs_b
[
l
]
+
probs_nb
[
l
])
else
:
probs_nb_cur
[
l_plus
]
+=
prob
[
c
]
*
(
probs_b
[
l
]
+
probs_nb
[
l
])
# add l_plus into prefix_set_next
prefix_set_next
[
l_plus
]
=
probs_nb_cur
[
l_plus
]
+
probs_b_cur
[
l_plus
]
# add l into prefix_set_next
prefix_set_next
[
l
]
=
probs_b_cur
[
l
]
+
probs_nb_cur
[
l
]
# update probs
probs_b
,
probs_nb
=
copy
.
deepcopy
(
probs_b_cur
),
copy
.
deepcopy
(
probs_nb_cur
)
## store top beam_size prefixes
prefix_set_prev
=
sorted
(
prefix_set_next
.
iteritems
(),
key
=
lambda
asd
:
asd
[
1
],
reverse
=
True
)
if
beam_size
<
len
(
prefix_set_prev
):
prefix_set_prev
=
prefix_set_prev
[:
beam_size
]
prefix_set_prev
=
dict
(
prefix_set_prev
)
beam_result
=
[]
for
(
seq
,
prob
)
in
prefix_set_prev
.
items
():
if
prob
>
0.0
:
ids_list
=
ids_str2list
(
seq
)[
1
:]
result
=
ids2sentence
(
ids_list
,
vocabulary
)
log_prob
=
np
.
log
(
prob
)
beam_result
.
append
([
log_prob
,
result
])
## output top beam_size decoding results
beam_result
=
sorted
(
beam_result
,
key
=
lambda
asd
:
asd
[
0
],
reverse
=
True
)
return
beam_result
deep_speech_2/infer.py
浏览文件 @
142a79fa
...
@@ -8,7 +8,7 @@ import argparse
...
@@ -8,7 +8,7 @@ import argparse
import
gzip
import
gzip
from
audio_data_utils
import
DataGenerator
from
audio_data_utils
import
DataGenerator
from
model
import
deep_speech2
from
model
import
deep_speech2
from
decoder
import
ctc_decode
from
decoder
import
*
parser
=
argparse
.
ArgumentParser
(
parser
=
argparse
.
ArgumentParser
(
description
=
'Simplified version of DeepSpeech2 inference.'
)
description
=
'Simplified version of DeepSpeech2 inference.'
)
...
@@ -59,7 +59,7 @@ parser.add_argument(
...
@@ -59,7 +59,7 @@ parser.add_argument(
help
=
"Vocabulary filepath. (default: %(default)s)"
)
help
=
"Vocabulary filepath. (default: %(default)s)"
)
parser
.
add_argument
(
parser
.
add_argument
(
"--decode_method"
,
"--decode_method"
,
default
=
'be
st_pat
h'
,
default
=
'be
am_searc
h'
,
type
=
str
,
type
=
str
,
help
=
"Method for ctc decoding, best_path or beam_search. (default: %(default)s)"
help
=
"Method for ctc decoding, best_path or beam_search. (default: %(default)s)"
)
)
...
@@ -69,11 +69,25 @@ parser.add_argument(
...
@@ -69,11 +69,25 @@ parser.add_argument(
type
=
int
,
type
=
int
,
help
=
"Width for beam search decoding. (default: %(default)d)"
)
help
=
"Width for beam search decoding. (default: %(default)d)"
)
parser
.
add_argument
(
parser
.
add_argument
(
"--num_result_per_sample"
,
"--num_result
s
_per_sample"
,
default
=
2
,
default
=
1
,
type
=
int
,
type
=
int
,
help
=
"Number of results per given sample in beam search. (default: %(default)d)"
help
=
"Number of output per sample in beam search. (default: %(default)d)"
)
)
parser
.
add_argument
(
"--language_model_path"
,
default
=
"./data/1Billion.klm"
,
type
=
str
,
help
=
"Path for language model. (default: %(default)d)"
)
parser
.
add_argument
(
"--alpha"
,
default
=
0.0
,
type
=
float
,
help
=
"Parameter associated with language model. (default: %(default)f)"
)
parser
.
add_argument
(
"--beta"
,
default
=
0.0
,
type
=
float
,
help
=
"Parameter associated with word count. (default: %(default)f)"
)
args
=
parser
.
parse_args
()
args
=
parser
.
parse_args
()
...
@@ -135,24 +149,34 @@ def infer():
...
@@ -135,24 +149,34 @@ def infer():
for
i
in
xrange
(
0
,
len
(
infer_data
))
for
i
in
xrange
(
0
,
len
(
infer_data
))
]
]
# decode and print
## decode and print
for
i
,
probs
in
enumerate
(
probs_split
):
# best path decode
best_path_transcription
=
ctc_decode
(
if
args
.
decode_method
==
"best_path"
:
probs_seq
=
probs
,
vocabulary
=
vocab_list
,
method
=
"best_path"
)
for
i
,
probs
in
enumerate
(
probs_split
):
target_transcription
=
''
.
join
(
target_transcription
=
''
.
join
(
[
vocab_list
[
index
]
for
index
in
infer_data
[
i
][
1
]])
[
vocab_list
[
index
]
for
index
in
infer_data
[
i
][
1
]])
print
(
"
\n
Target Transcription: %s
\n
Bst_path Transcription: %s"
%
best_path_transcription
=
ctc_best_path_decode
(
(
target_transcription
,
best_path_transcription
))
probs_seq
=
probs
,
vocabulary
=
vocab_list
)
beam_search_transcription
=
ctc_decode
(
print
(
"
\n
Target Transcription: %s
\n
Output Transcription: %s"
%
probs_seq
=
probs
,
(
target_transcription
,
best_path_transcription
))
vocabulary
=
vocab_list
,
# beam search decode
method
=
"beam_search"
,
elif
args
.
decode_method
==
"beam_search"
:
beam_size
=
args
.
beam_size
,
for
i
,
probs
in
enumerate
(
probs_split
):
num_results_per_sample
=
args
.
num_result_per_sample
)
target_transcription
=
''
.
join
(
for
index
in
range
(
len
(
beam_search_transcription
)):
[
vocab_list
[
index
]
for
index
in
infer_data
[
i
][
1
]])
print
(
"LM No, %d - %4f: %s "
%
ext_scorer
=
Scorer
(
args
.
alpha
,
args
.
beta
,
args
.
language_model_path
)
(
index
,
beam_search_transcription
[
index
][
0
],
beam_search_result
=
ctc_beam_search_decoder
(
beam_search_transcription
[
index
][
1
]))
probs_seq
=
probs
,
vocabulary
=
vocab_list
,
beam_size
=
args
.
beam_size
,
ext_scoring_func
=
ext_scorer
.
evaluate
,
blank_id
=
len
(
vocab_list
))
print
(
"
\n
Target Transcription:
\t
%s"
%
target_transcription
)
for
index
in
range
(
args
.
num_results_per_sample
):
result
=
beam_search_result
[
index
]
print
(
"Beam %d: %f
\t
%s"
%
(
index
,
result
[
0
],
result
[
1
]))
else
:
raise
ValueError
(
"Decoding method [%s] is not supported."
%
method
)
def
main
():
def
main
():
...
...
deep_speech_2/test_ctc_beam_search_decoder.py
已删除
100644 → 0
浏览文件 @
1e9ae323
from
__future__
import
absolute_import
from
__future__
import
print_function
import
numpy
as
np
import
tensorflow
as
tf
from
tensorflow.python.framework
import
ops
from
tensorflow.python.ops
import
array_ops
import
ctc_beam_search_decoder
as
tested_decoder
def
test_beam_search_decoder
():
max_time_steps
=
6
beam_size
=
20
num_results_per_sample
=
20
input_prob_matrix_0
=
np
.
asarray
(
[
[
0.30999
,
0.309938
,
0.0679938
,
0.0673362
,
0.0708352
,
0.173908
],
[
0.215136
,
0.439699
,
0.0370931
,
0.0393967
,
0.0381581
,
0.230517
],
[
0.199959
,
0.489485
,
0.0233221
,
0.0251417
,
0.0233289
,
0.238763
],
[
0.279611
,
0.452966
,
0.0204795
,
0.0209126
,
0.0194803
,
0.20655
],
[
0.51286
,
0.288951
,
0.0243026
,
0.0220788
,
0.0219297
,
0.129878
],
# Random entry added in at time=5
[
0.155251
,
0.164444
,
0.173517
,
0.176138
,
0.169979
,
0.160671
]
],
dtype
=
np
.
float32
)
# Add arbitrary offset - this is fine
input_log_prob_matrix_0
=
np
.
log
(
input_prob_matrix_0
)
#+ 2.0
# len max_time_steps array of batch_size x depth matrices
inputs
=
([
input_log_prob_matrix_0
[
t
,
:][
np
.
newaxis
,
:]
for
t
in
range
(
max_time_steps
)
])
inputs_t
=
[
ops
.
convert_to_tensor
(
x
)
for
x
in
inputs
]
inputs_t
=
array_ops
.
stack
(
inputs_t
)
# run CTC beam search decoder in tensorflow
with
tf
.
Session
()
as
sess
:
decoded
,
log_probabilities
=
tf
.
nn
.
ctc_beam_search_decoder
(
inputs_t
,
[
max_time_steps
],
beam_width
=
beam_size
,
top_paths
=
num_results_per_sample
,
merge_repeated
=
False
)
tf_decoded
=
sess
.
run
(
decoded
)
tf_log_probs
=
sess
.
run
(
log_probabilities
)
# run tested CTC beam search decoder
beam_result
=
tested_decoder
.
ctc_beam_search_decoder
(
input_probs_matrix
=
input_prob_matrix_0
,
beam_size
=
beam_size
,
blank_id
=
5
,
# default blank_id in tensorflow decoder is (num classes-1)
space_id
=
4
,
# doesn't matter
max_time_steps
=
max_time_steps
,
num_results_per_sample
=
num_results_per_sample
)
# compare decoding result
print
(
"{tf_decoder log probs}
\t
{tested_decoder log probs}: {tf_decoder result} {tested_decoder result}"
)
for
index
in
range
(
len
(
beam_result
)):
print
((
'%6f
\t
%6f: '
)
%
(
tf_log_probs
[
0
][
index
],
beam_result
[
index
][
0
]),
tf_decoded
[
index
].
values
,
' '
,
beam_result
[
index
][
1
])
if
__name__
==
'__main__'
:
test_beam_search_decoder
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录