Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
13890311
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
13890311
编写于
7月 02, 2018
作者:
Y
Yibing Liu
提交者:
GitHub
7月 02, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #967 from kuke/infer_ckpt
Adapt decoder to the new net config
上级
75e1bc22
db42a954
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
597 addition
and
216 deletion
+597
-216
fluid/DeepASR/decoder/post_decode_faster.cc
fluid/DeepASR/decoder/post_decode_faster.cc
+0
-145
fluid/DeepASR/decoder/post_latgen_faster_mapped.cc
fluid/DeepASR/decoder/post_latgen_faster_mapped.cc
+305
-0
fluid/DeepASR/decoder/post_latgen_faster_mapped.h
fluid/DeepASR/decoder/post_latgen_faster_mapped.h
+80
-0
fluid/DeepASR/decoder/pybind.cc
fluid/DeepASR/decoder/pybind.cc
+20
-8
fluid/DeepASR/decoder/setup.py
fluid/DeepASR/decoder/setup.py
+6
-6
fluid/DeepASR/decoder/setup.sh
fluid/DeepASR/decoder/setup.sh
+5
-0
fluid/DeepASR/examples/aishell/infer_by_ckpt.sh
fluid/DeepASR/examples/aishell/infer_by_ckpt.sh
+18
-0
fluid/DeepASR/examples/aishell/score_cer.sh
fluid/DeepASR/examples/aishell/score_cer.sh
+4
-0
fluid/DeepASR/infer_by_ckpt.py
fluid/DeepASR/infer_by_ckpt.py
+91
-57
fluid/DeepASR/score_error_rate.py
fluid/DeepASR/score_error_rate.py
+68
-0
未找到文件。
fluid/DeepASR/decoder/post_decode_faster.cc
已删除
100644 → 0
浏览文件 @
75e1bc22
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "post_decode_faster.h"
typedef
kaldi
::
int32
int32
;
using
fst
::
SymbolTable
;
using
fst
::
VectorFst
;
using
fst
::
StdArc
;
Decoder
::
Decoder
(
std
::
string
word_syms_filename
,
std
::
string
fst_in_filename
,
std
::
string
logprior_rxfilename
,
kaldi
::
BaseFloat
acoustic_scale
)
{
const
char
*
usage
=
"Decode, reading log-likelihoods (of transition-ids or whatever symbol "
"is on the graph) as matrices."
;
kaldi
::
ParseOptions
po
(
usage
);
binary
=
true
;
this
->
acoustic_scale
=
acoustic_scale
;
allow_partial
=
true
;
kaldi
::
FasterDecoderOptions
decoder_opts
;
decoder_opts
.
Register
(
&
po
,
true
);
// true == include obscure settings.
po
.
Register
(
"binary"
,
&
binary
,
"Write output in binary mode"
);
po
.
Register
(
"allow-partial"
,
&
allow_partial
,
"Produce output even when final state was not reached"
);
po
.
Register
(
"acoustic-scale"
,
&
acoustic_scale
,
"Scaling factor for acoustic likelihoods"
);
word_syms
=
NULL
;
if
(
word_syms_filename
!=
""
)
{
word_syms
=
fst
::
SymbolTable
::
ReadText
(
word_syms_filename
);
if
(
!
word_syms
)
KALDI_ERR
<<
"Could not read symbol table from file "
<<
word_syms_filename
;
}
std
::
ifstream
is_logprior
(
logprior_rxfilename
);
logprior
.
Read
(
is_logprior
,
false
);
// It's important that we initialize decode_fst after loglikes_reader, as it
// can prevent crashes on systems installed without enough virtual memory.
// It has to do with what happens on UNIX systems if you call fork() on a
// large process: the page-table entries are duplicated, which requires a
// lot of virtual memory.
decode_fst
=
fst
::
ReadFstKaldi
(
fst_in_filename
);
decoder
=
new
kaldi
::
FasterDecoder
(
*
decode_fst
,
decoder_opts
);
}
Decoder
::~
Decoder
()
{
if
(
!
word_syms
)
delete
word_syms
;
delete
decode_fst
;
delete
decoder
;
}
std
::
string
Decoder
::
decode
(
std
::
string
key
,
const
std
::
vector
<
std
::
vector
<
kaldi
::
BaseFloat
>>&
log_probs
)
{
size_t
num_frames
=
log_probs
.
size
();
size_t
dim_label
=
log_probs
[
0
].
size
();
kaldi
::
Matrix
<
kaldi
::
BaseFloat
>
loglikes
(
num_frames
,
dim_label
,
kaldi
::
kSetZero
,
kaldi
::
kStrideEqualNumCols
);
for
(
size_t
i
=
0
;
i
<
num_frames
;
++
i
)
{
memcpy
(
loglikes
.
Data
()
+
i
*
dim_label
,
log_probs
[
i
].
data
(),
sizeof
(
kaldi
::
BaseFloat
)
*
dim_label
);
}
return
decode
(
key
,
loglikes
);
}
std
::
vector
<
std
::
string
>
Decoder
::
decode
(
std
::
string
posterior_rspecifier
)
{
kaldi
::
SequentialBaseFloatMatrixReader
posterior_reader
(
posterior_rspecifier
);
std
::
vector
<
std
::
string
>
decoding_results
;
for
(;
!
posterior_reader
.
Done
();
posterior_reader
.
Next
())
{
std
::
string
key
=
posterior_reader
.
Key
();
kaldi
::
Matrix
<
kaldi
::
BaseFloat
>
loglikes
(
posterior_reader
.
Value
());
decoding_results
.
push_back
(
decode
(
key
,
loglikes
));
}
return
decoding_results
;
}
std
::
string
Decoder
::
decode
(
std
::
string
key
,
kaldi
::
Matrix
<
kaldi
::
BaseFloat
>&
loglikes
)
{
std
::
string
decoding_result
;
if
(
loglikes
.
NumRows
()
==
0
)
{
KALDI_WARN
<<
"Zero-length utterance: "
<<
key
;
}
KALDI_ASSERT
(
loglikes
.
NumCols
()
==
logprior
.
Dim
());
loglikes
.
ApplyLog
();
loglikes
.
AddVecToRows
(
-
1.0
,
logprior
);
kaldi
::
DecodableMatrixScaled
decodable
(
loglikes
,
acoustic_scale
);
decoder
->
Decode
(
&
decodable
);
VectorFst
<
kaldi
::
LatticeArc
>
decoded
;
// linear FST.
if
((
allow_partial
||
decoder
->
ReachedFinal
())
&&
decoder
->
GetBestPath
(
&
decoded
))
{
if
(
!
decoder
->
ReachedFinal
())
KALDI_WARN
<<
"Decoder did not reach end-state, outputting partial "
"traceback."
;
std
::
vector
<
int32
>
alignment
;
std
::
vector
<
int32
>
words
;
kaldi
::
LatticeWeight
weight
;
GetLinearSymbolSequence
(
decoded
,
&
alignment
,
&
words
,
&
weight
);
if
(
word_syms
!=
NULL
)
{
for
(
size_t
i
=
0
;
i
<
words
.
size
();
i
++
)
{
std
::
string
s
=
word_syms
->
Find
(
words
[
i
]);
decoding_result
+=
s
;
if
(
s
==
""
)
KALDI_ERR
<<
"Word-id "
<<
words
[
i
]
<<
" not in symbol table."
;
}
}
}
return
decoding_result
;
}
fluid/DeepASR/decoder/post_latgen_faster_mapped.cc
0 → 100644
浏览文件 @
13890311
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "post_latgen_faster_mapped.h"
#include <limits>
#include "ThreadPool.h"
using
namespace
kaldi
;
typedef
kaldi
::
int32
int32
;
using
fst
::
SymbolTable
;
using
fst
::
Fst
;
using
fst
::
StdArc
;
Decoder
::
Decoder
(
std
::
string
trans_model_in_filename
,
std
::
string
word_syms_filename
,
std
::
string
fst_in_filename
,
std
::
string
logprior_in_filename
,
size_t
beam_size
,
kaldi
::
BaseFloat
acoustic_scale
)
{
const
char
*
usage
=
"Generate lattices using neural net model.
\n
"
"Usage: post-latgen-faster-mapped [options] <trans-model> "
"<fst-in|fsts-rspecifier> <logprior> <posts-rspecifier>"
" <lattice-wspecifier> [ <words-wspecifier> [<alignments-wspecifier>] "
"]
\n
"
;
ParseOptions
po
(
usage
);
allow_partial
=
false
;
this
->
acoustic_scale
=
acoustic_scale
;
config
.
Register
(
&
po
);
int32
beam
=
11
;
po
.
Register
(
"acoustic-scale"
,
&
acoustic_scale
,
"Scaling factor for acoustic likelihoods"
);
po
.
Register
(
"word-symbol-table"
,
&
word_syms_filename
,
"Symbol table for words [for debug output]"
);
po
.
Register
(
"allow-partial"
,
&
allow_partial
,
"If true, produce output even if end state was not reached."
);
int
argc
=
2
;
char
*
argv
[]
=
{(
char
*
)
"post-latgen-faster-mapped"
,
(
char
*
)(
"--beam="
+
std
::
to_string
(
beam_size
)).
c_str
()};
po
.
Read
(
argc
,
argv
);
std
::
ifstream
is_logprior
(
logprior_in_filename
);
logprior
.
Read
(
is_logprior
,
false
);
{
bool
binary
;
Input
ki
(
trans_model_in_filename
,
&
binary
);
this
->
trans_model
.
Read
(
ki
.
Stream
(),
binary
);
}
this
->
determinize
=
config
.
determinize_lattice
;
this
->
word_syms
=
NULL
;
if
(
word_syms_filename
!=
""
)
{
if
(
!
(
word_syms
=
fst
::
SymbolTable
::
ReadText
(
word_syms_filename
)))
{
KALDI_ERR
<<
"Could not read symbol table from file "
<<
word_syms_filename
;
}
}
// Input FST is just one FST, not a table of FSTs.
this
->
decode_fst
=
fst
::
ReadFstKaldiGeneric
(
fst_in_filename
);
kaldi
::
LatticeFasterDecoder
*
decoder
=
new
LatticeFasterDecoder
(
*
decode_fst
,
config
);
decoder_pool
.
emplace_back
(
decoder
);
std
::
string
lattice_wspecifier
=
"ark:|gzip -c > mapped_decoder_data/lat.JOB.gz"
;
if
(
!
(
determinize
?
compact_lattice_writer
.
Open
(
lattice_wspecifier
)
:
lattice_writer
.
Open
(
lattice_wspecifier
)))
KALDI_ERR
<<
"Could not open table for writing lattices: "
<<
lattice_wspecifier
;
words_writer
=
new
Int32VectorWriter
(
""
);
alignment_writer
=
new
Int32VectorWriter
(
""
);
}
Decoder
::~
Decoder
()
{
if
(
!
this
->
word_syms
)
delete
this
->
word_syms
;
delete
this
->
decode_fst
;
for
(
size_t
i
=
0
;
i
<
decoder_pool
.
size
();
++
i
)
{
delete
decoder_pool
[
i
];
}
delete
words_writer
;
delete
alignment_writer
;
}
void
Decoder
::
decode_from_file
(
std
::
string
posterior_rspecifier
,
size_t
num_processes
)
{
try
{
double
tot_like
=
0.0
;
kaldi
::
int64
frame_count
=
0
;
// int num_success = 0, num_fail = 0;
KALDI_ASSERT
(
ClassifyRspecifier
(
fst_in_filename
,
NULL
,
NULL
)
==
kNoRspecifier
);
SequentialBaseFloatMatrixReader
posterior_reader
(
"ark:"
+
posterior_rspecifier
);
Timer
timer
;
timer
.
Reset
();
double
elapsed
=
0.0
;
for
(
size_t
n
=
decoder_pool
.
size
();
n
<
num_processes
;
++
n
)
{
kaldi
::
LatticeFasterDecoder
*
decoder
=
new
LatticeFasterDecoder
(
*
decode_fst
,
config
);
decoder_pool
.
emplace_back
(
decoder
);
}
elapsed
=
timer
.
Elapsed
();
ThreadPool
thread_pool
(
num_processes
);
while
(
!
posterior_reader
.
Done
())
{
timer
.
Reset
();
std
::
vector
<
std
::
future
<
std
::
string
>>
que
;
for
(
size_t
i
=
0
;
i
<
num_processes
&&
!
posterior_reader
.
Done
();
++
i
)
{
std
::
string
utt
=
posterior_reader
.
Key
();
Matrix
<
BaseFloat
>
&
loglikes
(
posterior_reader
.
Value
());
que
.
emplace_back
(
thread_pool
.
enqueue
(
std
::
bind
(
&
Decoder
::
decode_internal
,
this
,
decoder_pool
[
i
],
utt
,
loglikes
)));
posterior_reader
.
Next
();
}
timer
.
Reset
();
for
(
size_t
i
=
0
;
i
<
que
.
size
();
++
i
)
{
std
::
cout
<<
que
[
i
].
get
()
<<
std
::
endl
;
}
}
}
catch
(
const
std
::
exception
&
e
)
{
std
::
cerr
<<
e
.
what
();
}
}
inline
kaldi
::
Matrix
<
kaldi
::
BaseFloat
>
vector2kaldi_mat
(
const
std
::
vector
<
std
::
vector
<
kaldi
::
BaseFloat
>>
&
log_probs
)
{
size_t
num_frames
=
log_probs
.
size
();
size_t
dim_label
=
log_probs
[
0
].
size
();
kaldi
::
Matrix
<
kaldi
::
BaseFloat
>
loglikes
(
num_frames
,
dim_label
,
kaldi
::
kSetZero
,
kaldi
::
kStrideEqualNumCols
);
for
(
size_t
i
=
0
;
i
<
num_frames
;
++
i
)
{
memcpy
(
loglikes
.
Data
()
+
i
*
dim_label
,
log_probs
[
i
].
data
(),
sizeof
(
kaldi
::
BaseFloat
)
*
dim_label
);
}
return
loglikes
;
}
std
::
vector
<
std
::
string
>
Decoder
::
decode_batch
(
std
::
vector
<
std
::
string
>
keys
,
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
kaldi
::
BaseFloat
>>>
&
log_probs_batch
,
size_t
num_processes
)
{
ThreadPool
thread_pool
(
num_processes
);
std
::
vector
<
std
::
string
>
decoding_results
;
//(keys.size(), "");
for
(
size_t
n
=
decoder_pool
.
size
();
n
<
num_processes
;
++
n
)
{
kaldi
::
LatticeFasterDecoder
*
decoder
=
new
LatticeFasterDecoder
(
*
decode_fst
,
config
);
decoder_pool
.
emplace_back
(
decoder
);
}
size_t
index
=
0
;
while
(
index
<
keys
.
size
())
{
std
::
vector
<
std
::
future
<
std
::
string
>>
res_in_que
;
for
(
size_t
t
=
0
;
t
<
num_processes
&&
index
<
keys
.
size
();
++
t
)
{
kaldi
::
Matrix
<
kaldi
::
BaseFloat
>
loglikes
=
vector2kaldi_mat
(
log_probs_batch
[
index
]);
res_in_que
.
emplace_back
(
thread_pool
.
enqueue
(
std
::
bind
(
&
Decoder
::
decode_internal
,
this
,
decoder_pool
[
t
],
keys
[
index
],
loglikes
)));
index
++
;
}
for
(
size_t
i
=
0
;
i
<
res_in_que
.
size
();
++
i
)
{
decoding_results
.
emplace_back
(
res_in_que
[
i
].
get
());
}
}
return
decoding_results
;
}
std
::
string
Decoder
::
decode
(
std
::
string
key
,
const
std
::
vector
<
std
::
vector
<
kaldi
::
BaseFloat
>>
&
log_probs
)
{
kaldi
::
Matrix
<
kaldi
::
BaseFloat
>
loglikes
=
vector2kaldi_mat
(
log_probs
);
return
decode_internal
(
decoder_pool
[
0
],
key
,
loglikes
);
}
std
::
string
Decoder
::
decode_internal
(
LatticeFasterDecoder
*
decoder
,
std
::
string
key
,
kaldi
::
Matrix
<
kaldi
::
BaseFloat
>
&
loglikes
)
{
if
(
loglikes
.
NumRows
()
==
0
)
{
KALDI_WARN
<<
"Zero-length utterance: "
<<
key
;
// num_fail++;
}
KALDI_ASSERT
(
loglikes
.
NumCols
()
==
logprior
.
Dim
());
loglikes
.
ApplyLog
();
loglikes
.
AddVecToRows
(
-
1.0
,
logprior
);
DecodableMatrixScaledMapped
matrix_decodable
(
trans_model
,
loglikes
,
acoustic_scale
);
double
like
;
return
this
->
DecodeUtteranceLatticeFaster
(
decoder
,
matrix_decodable
,
key
,
&
like
);
}
std
::
string
Decoder
::
DecodeUtteranceLatticeFaster
(
LatticeFasterDecoder
*
decoder
,
DecodableInterface
&
decodable
,
// not const but is really an input.
std
::
string
utt
,
double
*
like_ptr
)
{
// puts utterance's like in like_ptr on success.
using
fst
::
VectorFst
;
std
::
string
ret
=
utt
+
' '
;
if
(
!
decoder
->
Decode
(
&
decodable
))
{
KALDI_WARN
<<
"Failed to decode file "
<<
utt
;
return
ret
;
}
if
(
!
decoder
->
ReachedFinal
())
{
if
(
allow_partial
)
{
KALDI_WARN
<<
"Outputting partial output for utterance "
<<
utt
<<
" since no final-state reached
\n
"
;
}
else
{
KALDI_WARN
<<
"Not producing output for utterance "
<<
utt
<<
" since no final-state reached and "
<<
"--allow-partial=false.
\n
"
;
return
ret
;
}
}
double
likelihood
;
LatticeWeight
weight
;
int32
num_frames
;
{
// First do some stuff with word-level traceback...
VectorFst
<
LatticeArc
>
decoded
;
if
(
!
decoder
->
GetBestPath
(
&
decoded
))
// Shouldn't really reach this point as already checked success.
KALDI_ERR
<<
"Failed to get traceback for utterance "
<<
utt
;
std
::
vector
<
int32
>
alignment
;
std
::
vector
<
int32
>
words
;
GetLinearSymbolSequence
(
decoded
,
&
alignment
,
&
words
,
&
weight
);
num_frames
=
alignment
.
size
();
// if (alignment_writer->IsOpen()) alignment_writer->Write(utt, alignment);
if
(
word_syms
!=
NULL
)
{
for
(
size_t
i
=
0
;
i
<
words
.
size
();
i
++
)
{
std
::
string
s
=
word_syms
->
Find
(
words
[
i
]);
ret
+=
s
+
' '
;
}
}
likelihood
=
-
(
weight
.
Value1
()
+
weight
.
Value2
());
}
// Get lattice, and do determinization if requested.
Lattice
lat
;
decoder
->
GetRawLattice
(
&
lat
);
if
(
lat
.
NumStates
()
==
0
)
KALDI_ERR
<<
"Unexpected problem getting lattice for utterance "
<<
utt
;
fst
::
Connect
(
&
lat
);
if
(
determinize
)
{
CompactLattice
clat
;
if
(
!
DeterminizeLatticePhonePrunedWrapper
(
trans_model
,
&
lat
,
decoder
->
GetOptions
().
lattice_beam
,
&
clat
,
decoder
->
GetOptions
().
det_opts
))
KALDI_WARN
<<
"Determinization finished earlier than the beam for "
<<
"utterance "
<<
utt
;
// We'll write the lattice without acoustic scaling.
if
(
acoustic_scale
!=
0.0
)
fst
::
ScaleLattice
(
fst
::
AcousticLatticeScale
(
1.0
/
acoustic_scale
),
&
clat
);
// disable output lattice temporarily
// compact_lattice_writer.Write(utt, clat);
}
else
{
// We'll write the lattice without acoustic scaling.
if
(
acoustic_scale
!=
0.0
)
fst
::
ScaleLattice
(
fst
::
AcousticLatticeScale
(
1.0
/
acoustic_scale
),
&
lat
);
// lattice_writer.Write(utt, lat);
}
return
ret
;
}
fluid/DeepASR/decoder/post_
decode_faster
.h
→
fluid/DeepASR/decoder/post_
latgen_faster_mapped
.h
浏览文件 @
13890311
...
...
@@ -17,42 +17,64 @@ limitations under the License. */
#include "base/kaldi-common.h"
#include "base/timer.h"
#include "decoder/decodable-matrix.h"
#include "decoder/
faster-decoder
.h"
#include "fstext/
fstext-lib
.h"
#include "decoder/
decoder-wrappers
.h"
#include "fstext/
kaldi-fst-io
.h"
#include "hmm/transition-model.h"
#include "lat/kaldi-lattice.h" // for {Compact}LatticeArc
#include "tree/context-dep.h"
#include "util/common-utils.h"
class
Decoder
{
public:
Decoder
(
std
::
string
word_syms_filename
,
Decoder
(
std
::
string
trans_model_in_filename
,
std
::
string
word_syms_filename
,
std
::
string
fst_in_filename
,
std
::
string
logprior_rxfilename
,
std
::
string
logprior_in_filename
,
size_t
beam_size
,
kaldi
::
BaseFloat
acoustic_scale
);
~
Decoder
();
// Interface to accept the scores read from specifier and return
// the batch decoding results
std
::
vector
<
std
::
string
>
decode
(
std
::
string
posterior_rspecifier
);
// Interface to accept the scores read from specifier and print
// the decoding results directly
void
decode_from_file
(
std
::
string
posterior_rspecifier
,
size_t
num_processes
=
1
);
// Accept the scores of one utterance and return the decoding result
std
::
string
decode
(
std
::
string
key
,
const
std
::
vector
<
std
::
vector
<
kaldi
::
BaseFloat
>>
&
log_probs
);
// Accept the scores of utterances in batch and return the decoding results
std
::
vector
<
std
::
string
>
decode_batch
(
std
::
vector
<
std
::
string
>
key
,
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
kaldi
::
BaseFloat
>>>
&
log_probs_batch
,
size_t
num_processes
=
1
);
private:
// For decoding one utterance
std
::
string
decode
(
std
::
string
key
,
kaldi
::
Matrix
<
kaldi
::
BaseFloat
>
&
loglikes
);
std
::
string
decode_internal
(
kaldi
::
LatticeFasterDecoder
*
decoder
,
std
::
string
key
,
kaldi
::
Matrix
<
kaldi
::
BaseFloat
>
&
loglikes
);
std
::
string
DecodeUtteranceLatticeFaster
(
kaldi
::
LatticeFasterDecoder
*
decoder
,
kaldi
::
DecodableInterface
&
decodable
,
std
::
string
utt
,
double
*
like_ptr
);
fst
::
SymbolTable
*
word_syms
;
fst
::
Vector
Fst
<
fst
::
StdArc
>
*
decode_fst
;
kaldi
::
FasterDecoder
*
decoder
;
fst
::
Fst
<
fst
::
StdArc
>
*
decode_fst
;
std
::
vector
<
kaldi
::
LatticeFasterDecoder
*>
decoder_pool
;
kaldi
::
Vector
<
kaldi
::
BaseFloat
>
logprior
;
kaldi
::
TransitionModel
trans_model
;
kaldi
::
LatticeFasterDecoderConfig
config
;
kaldi
::
CompactLatticeWriter
compact_lattice_writer
;
kaldi
::
LatticeWriter
lattice_writer
;
kaldi
::
Int32VectorWriter
*
words_writer
;
kaldi
::
Int32VectorWriter
*
alignment_writer
;
bool
binary
;
bool
determinize
;
kaldi
::
BaseFloat
acoustic_scale
;
bool
allow_partial
;
};
fluid/DeepASR/decoder/pybind.cc
浏览文件 @
13890311
...
...
@@ -15,25 +15,37 @@ limitations under the License. */
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include "post_
decode_faster
.h"
#include "post_
latgen_faster_mapped
.h"
namespace
py
=
pybind11
;
PYBIND11_MODULE
(
post_
decode_faster
,
m
)
{
PYBIND11_MODULE
(
post_
latgen_faster_mapped
,
m
)
{
m
.
doc
()
=
"Decoder for Deep ASR model"
;
py
::
class_
<
Decoder
>
(
m
,
"Decoder"
)
.
def
(
py
::
init
<
std
::
string
,
std
::
string
,
std
::
string
,
kaldi
::
BaseFloat
>
())
.
def
(
"decode"
,
(
std
::
vector
<
std
::
string
>
(
Decoder
::*
)(
std
::
string
))
&
Decoder
::
decode
,
.
def
(
py
::
init
<
std
::
string
,
std
::
string
,
std
::
string
,
std
::
string
,
size_t
,
kaldi
::
BaseFloat
>
())
.
def
(
"decode_from_file"
,
(
void
(
Decoder
::*
)(
std
::
string
,
size_t
))
&
Decoder
::
decode_from_file
,
"Decode for the probability matrices in specifier "
"and
return
the transcriptions."
)
"and
print
the transcriptions."
)
.
def
(
"decode"
,
(
std
::
string
(
Decoder
::*
)(
std
::
string
,
const
std
::
vector
<
std
::
vector
<
kaldi
::
BaseFloat
>>&
))
&
Decoder
::
decode
,
"Decode one input probability matrix "
"and return the transcription."
);
"and return the transcription."
)
.
def
(
"decode_batch"
,
(
std
::
vector
<
std
::
string
>
(
Decoder
::*
)(
std
::
vector
<
std
::
string
>
,
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
kaldi
::
BaseFloat
>>>&
,
size_t
num_processes
))
&
Decoder
::
decode_batch
,
"Decode one batch of probability matrices "
"and return the transcriptions."
);
}
fluid/DeepASR/decoder/setup.py
浏览文件 @
13890311
...
...
@@ -24,7 +24,7 @@ except:
"install kaldi and export KALDI_ROOT=<kaldi's root dir> ."
)
args
=
[
'-std=c++11'
,
'-Wno-sign-compare'
,
'-Wno-unused-variable'
,
'-std=c++11'
,
'-
fopenmp'
,
'-
Wno-sign-compare'
,
'-Wno-unused-variable'
,
'-Wno-unused-local-typedefs'
,
'-Wno-unused-but-set-variable'
,
'-Wno-deprecated-declarations'
,
'-Wno-unused-function'
]
...
...
@@ -49,11 +49,11 @@ LIB_DIRS = [os.path.abspath(path) for path in LIB_DIRS]
ext_modules
=
[
Extension
(
'post_
decode_faster
'
,
[
'pybind.cc'
,
'post_
decode_faster
.cc'
],
'post_
latgen_faster_mapped
'
,
[
'pybind.cc'
,
'post_
latgen_faster_mapped
.cc'
],
include_dirs
=
[
'pybind11/include'
,
'.'
,
os
.
path
.
join
(
kaldi_root
,
'src'
),
os
.
path
.
join
(
kaldi_root
,
'tools/openfst/src/include'
)
os
.
path
.
join
(
kaldi_root
,
'tools/openfst/src/include'
)
,
'ThreadPool'
],
language
=
'c++'
,
libraries
=
LIBS
,
...
...
@@ -63,8 +63,8 @@ ext_modules = [
]
setup
(
name
=
'post_
decode_faster
'
,
version
=
'0.
0.1
'
,
name
=
'post_
latgen_faster_mapped
'
,
version
=
'0.
1.0
'
,
author
=
'Paddle'
,
author_email
=
''
,
description
=
'Decoder for Deep ASR model'
,
...
...
fluid/DeepASR/decoder/setup.sh
浏览文件 @
13890311
...
...
@@ -4,4 +4,9 @@ if [ ! -d pybind11 ]; then
git clone https://github.com/pybind/pybind11.git
fi
if
[
!
-d
ThreadPool
]
;
then
git clone https://github.com/progschj/ThreadPool.git
echo
-e
"
\n
"
fi
python setup.py build_ext
-i
fluid/DeepASR/examples/aishell/infer_by_ckpt.sh
0 → 100644
浏览文件 @
13890311
decode_to_path
=
./decoding_result.txt
export
CUDA_VISIBLE_DEVICES
=
2,3,4,5
python
-u
../../infer_by_ckpt.py
--batch_size
96
\
--checkpoint
checkpoints/deep_asr.pass_20.checkpoint
\
--infer_feature_lst
data/test_feature.lst
\
--mean_var
data/global_mean_var
\
--frame_dim
80
\
--class_num
3040
\
--num_threads
24
\
--beam_size
11
\
--decode_to_path
$decode_to_path
\
--trans_model
mapped_decoder_data/exp/tri5a/final.mdl
\
--log_prior
mapped_decoder_data/logprior
\
--vocabulary
mapped_decoder_data/exp/tri5a/graph/words.txt
\
--graphs
mapped_decoder_data/exp/tri5a/graph/HCLG.fst
\
--acoustic_scale
0.059
\
--parallel
fluid/DeepASR/examples/aishell/score_cer.sh
0 → 100644
浏览文件 @
13890311
ref_txt
=
data/text.test
hyp_txt
=
decoding_result.txt
python ../../score_error_rate.py
--error_rate_type
cer
--ref
$ref_txt
--hyp
$hyp_txt
fluid/DeepASR/infer_by_ckpt.py
浏览文件 @
13890311
...
...
@@ -14,10 +14,9 @@ import data_utils.augmentor.trans_add_delta as trans_add_delta
import
data_utils.augmentor.trans_splice
as
trans_splice
import
data_utils.augmentor.trans_delay
as
trans_delay
import
data_utils.async_data_reader
as
reader
from
decoder.post_decode_faster
import
Decoder
from
data_utils.util
import
lodtensor_to_ndarray
from
data_utils.util
import
lodtensor_to_ndarray
,
split_infer_result
from
model_utils.model
import
stacked_lstmp_model
from
d
ata_utils.util
import
split_infer_result
from
d
ecoder.post_latgen_faster_mapped
import
Decoder
from
tools.error_rate
import
char_errors
...
...
@@ -28,6 +27,11 @@ def parse_args():
type
=
int
,
default
=
32
,
help
=
'The sequence number of a batch data. (default: %(default)d)'
)
parser
.
add_argument
(
'--beam_size'
,
type
=
int
,
default
=
11
,
help
=
'The beam size for decoding. (default: %(default)d)'
)
parser
.
add_argument
(
'--minimum_batch_size'
,
type
=
int
,
...
...
@@ -60,10 +64,10 @@ def parse_args():
default
=
1749
,
help
=
'Number of classes in label. (default: %(default)d)'
)
parser
.
add_argument
(
'--
learning_rate
'
,
type
=
floa
t
,
default
=
0.00016
,
help
=
'
Learning rate used to train. (default: %(default)f
)'
)
'--
num_threads
'
,
type
=
in
t
,
default
=
10
,
help
=
'
The number of threads for decoding. (default: %(default)d
)'
)
parser
.
add_argument
(
'--device'
,
type
=
str
,
...
...
@@ -75,7 +79,7 @@ def parse_args():
parser
.
add_argument
(
'--mean_var'
,
type
=
str
,
default
=
'data/global_mean_var
_search26kHr
'
,
default
=
'data/global_mean_var'
,
help
=
"The path for feature's global mean and variance. "
"(default: %(default)s)"
)
parser
.
add_argument
(
...
...
@@ -83,35 +87,30 @@ def parse_args():
type
=
str
,
default
=
'data/infer_feature.lst'
,
help
=
'The feature list path for inference. (default: %(default)s)'
)
parser
.
add_argument
(
'--infer_label_lst'
,
type
=
str
,
default
=
'data/infer_label.lst'
,
help
=
'The label list path for inference. (default: %(default)s)'
)
parser
.
add_argument
(
'--ref_txt'
,
type
=
str
,
default
=
'data/text.test'
,
help
=
'The reference text for decoding. (default: %(default)s)'
)
parser
.
add_argument
(
'--checkpoint'
,
type
=
str
,
default
=
'./checkpoint'
,
help
=
"The checkpoint path to init model. (default: %(default)s)"
)
parser
.
add_argument
(
'--trans_model'
,
type
=
str
,
default
=
'./graph/trans_model'
,
help
=
"The path to vocabulary. (default: %(default)s)"
)
parser
.
add_argument
(
'--vocabulary'
,
type
=
str
,
default
=
'./
decoder/
graph/words.txt'
,
default
=
'./graph/words.txt'
,
help
=
"The path to vocabulary. (default: %(default)s)"
)
parser
.
add_argument
(
'--graphs'
,
type
=
str
,
default
=
'./
decoder/
graph/TLG.fst'
,
default
=
'./graph/TLG.fst'
,
help
=
"The path to TLG graphs for decoding. (default: %(default)s)"
)
parser
.
add_argument
(
'--log_prior'
,
type
=
str
,
default
=
"./
decoder/
logprior"
,
default
=
"./logprior"
,
help
=
"The log prior probs for training data. (default: %(default)s)"
)
parser
.
add_argument
(
'--acoustic_scale'
,
...
...
@@ -119,10 +118,16 @@ def parse_args():
default
=
0.2
,
help
=
"Scaling factor for acoustic likelihoods. (default: %(default)f)"
)
parser
.
add_argument
(
'--target_trans'
,
'--post_matrix_path'
,
type
=
str
,
default
=
None
,
help
=
"The path to output post prob matrix. (default: %(default)s)"
)
parser
.
add_argument
(
'--decode_to_path'
,
type
=
str
,
default
=
"./decoder/target_trans.txt"
,
help
=
"The path to target transcription. (default: %(default)s)"
)
default
=
'./decoding_result.txt'
,
required
=
True
,
help
=
"The path to output the decoding result. (default: %(default)s)"
)
args
=
parser
.
parse_args
()
return
args
...
...
@@ -134,16 +139,47 @@ def print_arguments(args):
print
(
'------------------------------------------------'
)
def
get_trg_trans
(
args
):
trans_dict
=
{}
with
open
(
args
.
target_trans
)
as
trg_trans
:
line
=
trg_trans
.
readline
()
while
line
:
items
=
line
.
strip
().
split
()
key
=
items
[
0
]
trans_dict
[
key
]
=
''
.
join
(
items
[
1
:])
line
=
trg_trans
.
readline
()
return
trans_dict
class
PostMatrixWriter
:
""" The writer for outputing the post probability matrix
"""
def
__init__
(
self
,
to_path
):
self
.
_to_path
=
to_path
with
open
(
self
.
_to_path
,
"w"
)
as
post_matrix
:
post_matrix
.
seek
(
0
)
post_matrix
.
truncate
()
def
write
(
self
,
keys
,
probs
):
with
open
(
self
.
_to_path
,
"a"
)
as
post_matrix
:
if
isinstance
(
keys
,
str
):
keys
,
probs
=
[
keys
],
[
probs
]
for
key
,
prob
in
zip
(
keys
,
probs
):
post_matrix
.
write
(
key
+
" [
\n
"
)
for
i
in
range
(
prob
.
shape
[
0
]):
for
j
in
range
(
prob
.
shape
[
1
]):
post_matrix
.
write
(
str
(
prob
[
i
][
j
])
+
" "
)
post_matrix
.
write
(
"
\n
"
)
post_matrix
.
write
(
"]
\n
"
)
class
DecodingResultWriter
:
""" The writer for writing out decoding results
"""
def
__init__
(
self
,
to_path
):
self
.
_to_path
=
to_path
with
open
(
self
.
_to_path
,
"w"
)
as
decoding_result
:
decoding_result
.
seek
(
0
)
decoding_result
.
truncate
()
def
write
(
self
,
results
):
with
open
(
self
.
_to_path
,
"a"
)
as
decoding_result
:
if
isinstance
(
results
,
str
):
decoding_result
.
write
(
results
.
encode
(
"utf8"
)
+
"
\n
"
)
else
:
for
result
in
results
:
decoding_result
.
write
(
result
.
encode
(
"utf8"
)
+
"
\n
"
)
def
infer_from_ckpt
(
args
):
...
...
@@ -162,9 +198,10 @@ def infer_from_ckpt(args):
infer_program
=
fluid
.
default_main_program
().
clone
()
# optimizer, placeholder
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
fluid
.
layers
.
exponential_decay
(
learning_rate
=
args
.
learning_rate
,
learning_rate
=
0.0001
,
decay_steps
=
1879
,
decay_rate
=
1
/
1.2
,
staircase
=
True
))
...
...
@@ -174,34 +211,38 @@ def infer_from_ckpt(args):
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
trg_trans
=
get_trg_trans
(
args
)
# load checkpoint.
fluid
.
io
.
load_persistables
(
exe
,
args
.
checkpoint
)
# init decoder
decoder
=
Decoder
(
args
.
vocabulary
,
args
.
graphs
,
args
.
log_prior
,
args
.
acoustic_scale
)
decoder
=
Decoder
(
args
.
trans_model
,
args
.
vocabulary
,
args
.
graphs
,
args
.
log_prior
,
args
.
beam_size
,
args
.
acoustic_scale
)
ltrans
=
[
trans_add_delta
.
TransAddDelta
(
2
,
2
),
trans_mean_variance_norm
.
TransMeanVarianceNorm
(
args
.
mean_var
),
trans_splice
.
TransSplice
(),
trans_delay
.
TransDelay
(
5
)
trans_splice
.
TransSplice
(
5
,
5
),
trans_delay
.
TransDelay
(
5
)
]
feature_t
=
fluid
.
LoDTensor
()
label_t
=
fluid
.
LoDTensor
()
# infer data reader
infer_data_reader
=
reader
.
AsyncDataReader
(
args
.
infer_feature_lst
,
args
.
infer_label_lst
)
infer_data_reader
=
reader
.
AsyncDataReader
(
args
.
infer_feature_lst
,
drop_frame_len
=-
1
,
split_sentence_threshold
=-
1
)
infer_data_reader
.
set_transformers
(
ltrans
)
infer_costs
,
infer_accs
=
[],
[]
total_edit_dist
,
total_ref_len
=
0.0
,
0
decoding_result_writer
=
DecodingResultWriter
(
args
.
decode_to_path
)
post_matrix_writer
=
None
if
args
.
post_matrix_path
is
None
\
else
PostMatrixWriter
(
args
.
post_matrix_path
)
for
batch_id
,
batch_data
in
enumerate
(
infer_data_reader
.
batch_iterator
(
args
.
batch_size
,
args
.
minimum_batch_size
)):
# load_data
(
features
,
labels
,
lod
,
name_lst
)
=
batch_data
features
=
np
.
reshape
(
features
,
(
-
1
,
11
,
3
,
args
.
frame_dim
))
features
=
np
.
transpose
(
features
,
(
0
,
2
,
1
,
3
))
feature_t
.
set
(
features
,
place
)
feature_t
.
set_lod
([
lod
])
label_t
.
set
(
labels
,
place
)
...
...
@@ -212,24 +253,17 @@ def infer_from_ckpt(args):
"label"
:
label_t
},
fetch_list
=
[
prediction
,
avg_cost
,
accuracy
],
return_numpy
=
False
)
infer_costs
.
append
(
lodtensor_to_ndarray
(
results
[
1
])[
0
])
infer_accs
.
append
(
lodtensor_to_ndarray
(
results
[
2
])[
0
])
probs
,
lod
=
lodtensor_to_ndarray
(
results
[
0
])
infer_batch
=
split_infer_result
(
probs
,
lod
)
for
index
,
sample
in
enumerate
(
infer_batch
):
key
=
name_lst
[
index
]
ref
=
trg_trans
[
key
]
hyp
=
decoder
.
decode
(
key
,
sample
)
edit_dist
,
ref_len
=
char_errors
(
ref
.
decode
(
"utf8"
),
hyp
)
total_edit_dist
+=
edit_dist
total_ref_len
+=
ref_len
print
(
key
+
"|Ref:"
,
ref
)
print
(
key
+
"|Hyp:"
,
hyp
.
encode
(
"utf8"
))
print
(
"Instance CER: "
,
edit_dist
/
ref_len
)
print
(
"Total CER = %f"
%
(
total_edit_dist
/
total_ref_len
))
print
(
"Decoding batch %d ..."
%
batch_id
)
decoded
=
decoder
.
decode_batch
(
name_lst
,
infer_batch
,
args
.
num_threads
)
decoding_result_writer
.
write
(
decoded
)
if
args
.
post_matrix_path
is
not
None
:
post_matrix_writer
.
write
(
name_lst
,
infer_batch
)
if
__name__
==
'__main__'
:
...
...
fluid/DeepASR/score_error_rate.py
0 → 100644
浏览文件 @
13890311
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
argparse
from
tools.error_rate
import
char_errors
,
word_errors
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
"Score word/character error rate (WER/CER) "
"for decoding result."
)
parser
.
add_argument
(
'--error_rate_type'
,
type
=
str
,
default
=
'cer'
,
choices
=
[
'cer'
,
'wer'
],
help
=
"Error rate type. (default: %(default)s)"
)
parser
.
add_argument
(
'--ref'
,
type
=
str
,
required
=
True
,
help
=
"The ground truth text."
)
parser
.
add_argument
(
'--hyp'
,
type
=
str
,
required
=
True
,
help
=
"The decoding result."
)
args
=
parser
.
parse_args
()
return
args
if
__name__
==
'__main__'
:
args
=
parse_args
()
ref_dict
=
{}
sum_errors
,
sum_ref_len
=
0.0
,
0
sent_cnt
,
not_in_ref_cnt
=
0
,
0
with
open
(
args
.
ref
,
"r"
)
as
ref_txt
:
line
=
ref_txt
.
readline
()
while
line
:
del_pos
=
line
.
find
(
" "
)
key
,
sent
=
line
[
0
:
del_pos
],
line
[
del_pos
+
1
:
-
1
].
strip
()
ref_dict
[
key
]
=
sent
line
=
ref_txt
.
readline
()
with
open
(
args
.
hyp
,
"r"
)
as
hyp_txt
:
line
=
hyp_txt
.
readline
()
while
line
:
del_pos
=
line
.
find
(
" "
)
key
,
sent
=
line
[
0
:
del_pos
],
line
[
del_pos
+
1
:
-
1
].
strip
()
sent_cnt
+=
1
line
=
hyp_txt
.
readline
()
if
key
not
in
ref_dict
:
not_in_ref_cnt
+=
1
continue
if
args
.
error_rate_type
==
'cer'
:
errors
,
ref_len
=
char_errors
(
ref_dict
[
key
].
decode
(
"utf8"
),
sent
.
decode
(
"utf8"
),
remove_space
=
True
)
else
:
errors
,
ref_len
=
word_errors
(
ref_dict
[
key
].
decode
(
"utf8"
),
sent
.
decode
(
"utf8"
))
sum_errors
+=
errors
sum_ref_len
+=
ref_len
print
(
"Error rate[%s] = %f (%d/%d),"
%
(
args
.
error_rate_type
,
sum_errors
/
sum_ref_len
,
int
(
sum_errors
),
sum_ref_len
))
print
(
"total %d sentences in hyp, %d not presented in ref."
%
(
sent_cnt
,
not_in_ref_cnt
))
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录