Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
13682d73
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
13682d73
编写于
3月 22, 2018
作者:
Q
qingqing01
提交者:
GitHub
3月 22, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #751 from Noplz/ssd_multigpu
add ssd latest data augmentation
上级
35308832
ee7c8d90
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
116 addition
and
14 deletion
+116
-14
fluid/object_detection/image_util.py
fluid/object_detection/image_util.py
+75
-1
fluid/object_detection/reader.py
fluid/object_detection/reader.py
+30
-3
fluid/object_detection/train.py
fluid/object_detection/train.py
+11
-10
未找到文件。
fluid/object_detection/image_util.py
浏览文件 @
13682d73
from
PIL
import
Image
from
PIL
import
Image
,
ImageEnhance
import
numpy
as
np
import
random
import
math
...
...
@@ -159,3 +159,77 @@ def crop_image(img, bbox_labels, sample_bbox, image_width, image_height):
sample_img
=
img
[
ymin
:
ymax
,
xmin
:
xmax
]
sample_labels
=
transform_labels
(
bbox_labels
,
sample_bbox
)
return
sample_img
,
sample_labels
def
random_brightness
(
img
,
settings
):
prob
=
random
.
uniform
(
0
,
1
)
if
prob
<
settings
.
_brightness_prob
:
delta
=
random
.
uniform
(
-
settings
.
_brightness_delta
,
settings
.
_brightness_delta
)
+
1
img
=
ImageEnhance
.
Brightness
(
img
).
enhance
(
delta
)
return
img
def
random_contrast
(
img
,
settings
):
prob
=
random
.
uniform
(
0
,
1
)
if
prob
<
settings
.
_contrast_prob
:
delta
=
random
.
uniform
(
-
settings
.
_contrast_delta
,
settings
.
_contrast_delta
)
+
1
img
=
ImageEnhance
.
Contrast
(
img
).
enhance
(
delta
)
return
img
def
random_saturation
(
img
,
settings
):
prob
=
random
.
uniform
(
0
,
1
)
if
prob
<
settings
.
_saturation_prob
:
delta
=
random
.
uniform
(
-
settings
.
_saturation_delta
,
settings
.
_saturation_delta
)
+
1
img
=
ImageEnhance
.
Color
(
img
).
enhance
(
delta
)
return
img
def
random_hue
(
img
,
settings
):
prob
=
random
.
uniform
(
0
,
1
)
if
prob
<
settings
.
_hue_prob
:
delta
=
random
.
uniform
(
-
settings
.
_hue_delta
,
settings
.
_hue_delta
)
img_hsv
=
np
.
array
(
img
.
convert
(
'HSV'
))
img_hsv
[:,
:,
0
]
=
img_hsv
[:,
:,
0
]
+
delta
img
=
Image
.
fromarray
(
img_hsv
,
mode
=
'HSV'
).
convert
(
'RGB'
)
return
img
def
distort_image
(
img
,
settings
):
prob
=
random
.
uniform
(
0
,
1
)
# Apply different distort order
if
prob
>
0.5
:
img
=
random_brightness
(
img
,
settings
)
img
=
random_contrast
(
img
,
settings
)
img
=
random_saturation
(
img
,
settings
)
img
=
random_hue
(
img
,
settings
)
else
:
img
=
random_brightness
(
img
,
settings
)
img
=
random_saturation
(
img
,
settings
)
img
=
random_hue
(
img
,
settings
)
img
=
random_contrast
(
img
,
settings
)
return
img
def
expand_image
(
img
,
bbox_labels
,
img_width
,
img_height
,
settings
):
prob
=
random
.
uniform
(
0
,
1
)
if
prob
<
settings
.
_hue_prob
:
expand_ratio
=
random
.
uniform
(
1
,
settings
.
_expand_max_ratio
)
if
expand_ratio
-
1
>=
0.01
:
height
=
int
(
img_height
*
expand_ratio
)
width
=
int
(
img_width
*
expand_ratio
)
h_off
=
math
.
floor
(
random
.
uniform
(
0
,
height
-
img_height
))
w_off
=
math
.
floor
(
random
.
uniform
(
0
,
width
-
img_width
))
expand_bbox
=
bbox
(
-
w_off
/
img_width
,
-
h_off
/
img_height
,
(
width
-
w_off
)
/
img_width
,
(
height
-
h_off
)
/
img_height
)
expand_img
=
np
.
ones
((
height
,
width
,
3
))
expand_img
=
np
.
uint8
(
expand_img
*
np
.
squeeze
(
settings
.
_img_mean
))
expand_img
=
Image
.
fromarray
(
expand_img
)
expand_img
.
paste
(
img
,
(
int
(
w_off
),
int
(
h_off
)))
bbox_labels
=
transform_labels
(
bbox_labels
,
expand_bbox
)
return
expand_img
,
bbox_labels
return
img
,
bbox_labels
fluid/object_detection/reader.py
浏览文件 @
13682d73
...
...
@@ -22,17 +22,38 @@ import os
class
Settings
(
object
):
def
__init__
(
self
,
data_dir
,
label_file
,
resize_h
,
resize_w
,
mean_value
):
def
__init__
(
self
,
data_dir
,
label_file
,
resize_h
,
resize_w
,
mean_value
,
apply_distort
,
apply_expand
):
self
.
_data_dir
=
data_dir
self
.
_label_list
=
[]
label_fpath
=
os
.
path
.
join
(
data_dir
,
label_file
)
for
line
in
open
(
label_fpath
):
self
.
_label_list
.
append
(
line
.
strip
())
self
.
_apply_distort
=
apply_distort
self
.
_apply_expand
=
apply_expand
self
.
_resize_height
=
resize_h
self
.
_resize_width
=
resize_w
self
.
_img_mean
=
np
.
array
(
mean_value
)[:,
np
.
newaxis
,
np
.
newaxis
].
astype
(
'float32'
)
self
.
_expand_prob
=
0.5
self
.
_expand_max_ratio
=
4
self
.
_hue_prob
=
0.5
self
.
_hue_delta
=
18
self
.
_contrast_prob
=
0.5
self
.
_contrast_delta
=
0.5
self
.
_saturation_prob
=
0.5
self
.
_saturation_delta
=
0.5
self
.
_brightness_prob
=
0.5
self
.
_brightness_delta
=
0.125
@
property
def
apply_distort
(
self
):
return
self
.
_apply_expand
@
property
def
apply_distort
(
self
):
return
self
.
_apply_distort
@
property
def
data_dir
(
self
):
...
...
@@ -71,7 +92,6 @@ def _reader_creator(settings, file_list, mode, shuffle):
img
=
Image
.
open
(
img_path
)
img_width
,
img_height
=
img
.
size
img
=
np
.
array
(
img
)
# layout: label | xmin | ymin | xmax | ymax | difficult
if
mode
==
'train'
or
mode
==
'test'
:
...
...
@@ -99,6 +119,12 @@ def _reader_creator(settings, file_list, mode, shuffle):
sample_labels
=
bbox_labels
if
mode
==
'train'
:
if
settings
.
_apply_distort
:
img
=
image_util
.
distort_image
(
img
,
settings
)
if
settings
.
_apply_expand
:
img
,
bbox_labels
=
image_util
.
expand_image
(
img
,
bbox_labels
,
img_width
,
img_height
,
settings
)
batch_sampler
=
[]
# hard-code here
batch_sampler
.
append
(
...
...
@@ -126,13 +152,14 @@ def _reader_creator(settings, file_list, mode, shuffle):
sampled_bbox
=
image_util
.
generate_batch_samples
(
batch_sampler
,
bbox_labels
,
img_width
,
img_height
)
img
=
np
.
array
(
img
)
if
len
(
sampled_bbox
)
>
0
:
idx
=
int
(
random
.
uniform
(
0
,
len
(
sampled_bbox
)))
img
,
sample_labels
=
image_util
.
crop_image
(
img
,
bbox_labels
,
sampled_bbox
[
idx
],
img_width
,
img_height
)
img
=
Image
.
fromarray
(
img
)
img
=
Image
.
fromarray
(
img
)
img
=
img
.
resize
((
settings
.
resize_w
,
settings
.
resize_h
),
Image
.
ANTIALIAS
)
img
=
np
.
array
(
img
)
...
...
fluid/object_detection/train.py
浏览文件 @
13682d73
...
...
@@ -77,13 +77,10 @@ def train(args,
evaluate_difficult
=
False
,
ap_version
=
'11point'
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
fluid
.
layers
.
exponential_decay
(
learning_rate
=
learning_rate
,
decay_steps
=
40000
,
decay_rate
=
0.1
,
staircase
=
True
),
momentum
=
0.9
,
boundaries
=
[
40000
,
60000
]
values
=
[
0.001
,
0.0005
,
0.00025
]
optimizer
=
fluid
.
optimizer
.
RMSProp
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
,
values
),
regularization
=
fluid
.
regularizer
.
L2Decay
(
0.00005
),
)
optimizer
.
minimize
(
loss
)
...
...
@@ -92,7 +89,8 @@ def train(args,
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
load_model
.
load_paddlev1_vars
(
place
)
load_model
.
load_and_set_vars
(
place
)
#load_model.load_paddlev1_vars(place)
train_reader
=
paddle
.
batch
(
reader
.
train
(
data_args
,
train_file_list
),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
...
...
@@ -117,8 +115,9 @@ def train(args,
loss_v
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
loss
])
print
(
"Pass {0}, batch {1}, loss {2}"
.
format
(
pass_id
,
batch_id
,
loss_v
[
0
]))
if
batch_id
%
20
==
0
:
print
(
"Pass {0}, batch {1}, loss {2}"
.
format
(
pass_id
,
batch_id
,
loss_v
[
0
]))
test
(
pass_id
)
if
pass_id
%
10
==
0
:
...
...
@@ -134,6 +133,8 @@ if __name__ == '__main__':
data_args
=
reader
.
Settings
(
data_dir
=
'./data'
,
label_file
=
'label_list'
,
apply_distort
=
True
,
apply_expand
=
True
,
resize_h
=
300
,
resize_w
=
300
,
mean_value
=
[
127.5
,
127.5
,
127.5
])
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录