Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
132a26af
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
132a26af
编写于
6月 14, 2017
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine NER.
上级
f27154e7
变更
19
展开全部
隐藏空白更改
内联
并排
Showing
19 changed file
with
100604 addition
and
273 deletion
+100604
-273
hsigmoid/README.md
hsigmoid/README.md
+0
-0
hsigmoid/hsigmoid_conf.py
hsigmoid/hsigmoid_conf.py
+0
-0
hsigmoid/hsigmoid_predict.py
hsigmoid/hsigmoid_predict.py
+0
-0
hsigmoid/hsigmoid_train.py
hsigmoid/hsigmoid_train.py
+0
-0
hsigmoid/images/binary_tree.png
hsigmoid/images/binary_tree.png
+0
-0
hsigmoid/images/network_conf.png
hsigmoid/images/network_conf.png
+0
-0
hsigmoid/images/path_to_1.png
hsigmoid/images/path_to_1.png
+0
-0
hsigmoid/index.html
hsigmoid/index.html
+0
-0
sequence_tagging_for_ner/.gitignore
sequence_tagging_for_ner/.gitignore
+2
-0
sequence_tagging_for_ner/data/download.sh
sequence_tagging_for_ner/data/download.sh
+2
-2
sequence_tagging_for_ner/data/test
sequence_tagging_for_ner/data/test
+0
-2
sequence_tagging_for_ner/data/train
sequence_tagging_for_ner/data/train
+0
-2
sequence_tagging_for_ner/data/vocab.txt
sequence_tagging_for_ner/data/vocab.txt
+100232
-0
sequence_tagging_for_ner/infer.py
sequence_tagging_for_ner/infer.py
+62
-0
sequence_tagging_for_ner/ner.py
sequence_tagging_for_ner/ner.py
+0
-267
sequence_tagging_for_ner/network_conf.py
sequence_tagging_for_ner/network_conf.py
+109
-0
sequence_tagging_for_ner/reader.py
sequence_tagging_for_ner/reader.py
+68
-0
sequence_tagging_for_ner/train.py
sequence_tagging_for_ner/train.py
+101
-0
sequence_tagging_for_ner/utils.py
sequence_tagging_for_ner/utils.py
+28
-0
未找到文件。
word_embedding
/README.md
→
hsigmoid
/README.md
浏览文件 @
132a26af
文件已移动
word_embedding
/hsigmoid_conf.py
→
hsigmoid
/hsigmoid_conf.py
浏览文件 @
132a26af
文件已移动
word_embedding
/hsigmoid_predict.py
→
hsigmoid
/hsigmoid_predict.py
浏览文件 @
132a26af
文件已移动
word_embedding
/hsigmoid_train.py
→
hsigmoid
/hsigmoid_train.py
浏览文件 @
132a26af
文件已移动
word_embedding
/images/binary_tree.png
→
hsigmoid
/images/binary_tree.png
浏览文件 @
132a26af
文件已移动
word_embedding
/images/network_conf.png
→
hsigmoid
/images/network_conf.png
浏览文件 @
132a26af
文件已移动
word_embedding
/images/path_to_1.png
→
hsigmoid
/images/path_to_1.png
浏览文件 @
132a26af
文件已移动
word_embedding
/index.html
→
hsigmoid
/index.html
浏览文件 @
132a26af
文件已移动
sequence_tagging_for_ner/.gitignore
0 → 100644
浏览文件 @
132a26af
*.pyc
*.tar.gz
sequence_tagging_for_ner/data/download.sh
浏览文件 @
132a26af
wget http://cs224d.stanford.edu/assignment2/assignment2.zip
unzip assignment2.zip
cp
assignment2_release/data/ner/wordVectors.txt
data
/
cp
assignment2_release/data/ner/vocab.txt
data
/
cp
assignment2_release/data/ner/wordVectors.txt
.
/
cp
assignment2_release/data/ner/vocab.txt
.
/
rm
-rf
assignment2.zip assignment2_release
sequence_tagging_for_ner/data/test
浏览文件 @
132a26af
-DOCSTART- -X- O O
CRICKET NNP I-NP O
- : O O
LEICESTERSHIRE NNP I-NP I-ORG
...
...
sequence_tagging_for_ner/data/train
浏览文件 @
132a26af
-DOCSTART- -X- O O
EU NNP I-NP I-ORG
rejects VBZ I-VP O
German JJ I-NP I-MISC
...
...
sequence_tagging_for_ner/data/vocab.txt
0 → 100644
浏览文件 @
132a26af
此差异已折叠。
点击以展开。
sequence_tagging_for_ner/infer.py
0 → 100644
浏览文件 @
132a26af
import
gzip
import
reader
from
network_conf
import
*
from
utils
import
*
def
infer
(
model_path
,
batch_size
,
test_data_file
,
vocab_file
,
target_file
):
def
_infer_a_batch
(
inferer
,
test_data
,
id_2_word
,
id_2_label
):
probs
=
inferer
.
infer
(
input
=
test_data
,
field
=
[
"id"
])
assert
len
(
probs
)
==
sum
(
len
(
x
[
0
])
for
x
in
test_data
)
for
idx
,
test_sample
in
enumerate
(
test_data
):
start_id
=
0
pred_str
=
""
for
w
,
tag
in
zip
(
test_sample
[
0
],
probs
[
start_id
:
start_id
+
len
(
test_sample
[
0
])]):
pred_str
+=
"%s[%s] "
%
(
id_2_word
[
w
],
id_2_label
[
tag
])
print
(
pred_str
.
strip
())
start_id
+=
len
(
test_sample
[
0
])
word_dict
=
load_dict
(
vocab_file
)
word_dict_len
=
len
(
word_dict
)
word_reverse_dict
=
load_reverse_dict
(
vocab_file
)
label_dict
=
load_dict
(
target_file
)
label_reverse_dict
=
load_reverse_dict
(
target_file
)
label_dict_len
=
len
(
label_dict
)
# initialize PaddlePaddle
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
gzip
.
open
(
model_path
,
"r"
))
predict
=
ner_net
(
word_dict_len
=
word_dict_len
,
label_dict_len
=
label_dict_len
,
is_train
=
False
)
inferer
=
paddle
.
inference
.
Inference
(
output_layer
=
predict
,
parameters
=
parameters
)
test_data
=
[]
for
i
,
item
in
enumerate
(
reader
.
data_reader
(
test_data_file
,
word_dict
,
label_dict
)()):
test_data
.
append
([
item
[
0
],
item
[
1
]])
if
len
(
test_data
)
==
batch_size
:
_infer_a_batch
(
inferer
,
test_data
,
word_reverse_dict
,
label_reverse_dict
)
test_data
=
[]
_infer_a_batch
(
inferer
,
test_data
,
word_reverse_dict
,
label_reverse_dict
)
test_data
=
[]
if
__name__
==
"__main__"
:
infer
(
model_path
=
"models/params_pass_0.tar.gz"
,
batch_size
=
2
,
test_data_file
=
"data/test"
,
vocab_file
=
"data/vocab.txt"
,
target_file
=
"data/target.txt"
)
sequence_tagging_for_ner/ner.py
已删除
100644 → 0
浏览文件 @
f27154e7
import
math
import
gzip
import
paddle.v2
as
paddle
import
paddle.v2.evaluator
as
evaluator
import
conll03
import
itertools
# init dataset
train_data_file
=
'data/train'
test_data_file
=
'data/test'
vocab_file
=
'data/vocab.txt'
target_file
=
'data/target.txt'
emb_file
=
'data/wordVectors.txt'
train_data_reader
=
conll03
.
train
(
train_data_file
,
vocab_file
,
target_file
)
test_data_reader
=
conll03
.
test
(
test_data_file
,
vocab_file
,
target_file
)
word_dict
,
label_dict
=
conll03
.
get_dict
(
vocab_file
,
target_file
)
word_vector_values
=
conll03
.
get_embedding
(
emb_file
)
# init hyper-params
word_dict_len
=
len
(
word_dict
)
label_dict_len
=
len
(
label_dict
)
mark_dict_len
=
2
word_dim
=
50
mark_dim
=
5
hidden_dim
=
300
mix_hidden_lr
=
1e-3
default_std
=
1
/
math
.
sqrt
(
hidden_dim
)
/
3.0
emb_para
=
paddle
.
attr
.
Param
(
name
=
'emb'
,
initial_std
=
math
.
sqrt
(
1.
/
word_dim
),
is_static
=
True
)
std_0
=
paddle
.
attr
.
Param
(
initial_std
=
0.
)
std_default
=
paddle
.
attr
.
Param
(
initial_std
=
default_std
)
def
d_type
(
size
):
return
paddle
.
data_type
.
integer_value_sequence
(
size
)
def
ner_net
(
is_train
):
word
=
paddle
.
layer
.
data
(
name
=
'word'
,
type
=
d_type
(
word_dict_len
))
mark
=
paddle
.
layer
.
data
(
name
=
'mark'
,
type
=
d_type
(
mark_dict_len
))
word_embedding
=
paddle
.
layer
.
mixed
(
name
=
'word_embedding'
,
size
=
word_dim
,
input
=
paddle
.
layer
.
table_projection
(
input
=
word
,
param_attr
=
emb_para
))
mark_embedding
=
paddle
.
layer
.
mixed
(
name
=
'mark_embedding'
,
size
=
mark_dim
,
input
=
paddle
.
layer
.
table_projection
(
input
=
mark
,
param_attr
=
std_0
))
emb_layers
=
[
word_embedding
,
mark_embedding
]
word_caps_vector
=
paddle
.
layer
.
concat
(
name
=
'word_caps_vector'
,
input
=
emb_layers
)
hidden_1
=
paddle
.
layer
.
mixed
(
name
=
'hidden1'
,
size
=
hidden_dim
,
act
=
paddle
.
activation
.
Tanh
(),
bias_attr
=
std_default
,
input
=
[
paddle
.
layer
.
full_matrix_projection
(
input
=
word_caps_vector
,
param_attr
=
std_default
)
])
rnn_para_attr
=
paddle
.
attr
.
Param
(
initial_std
=
0.0
,
learning_rate
=
0.1
)
hidden_para_attr
=
paddle
.
attr
.
Param
(
initial_std
=
default_std
,
learning_rate
=
mix_hidden_lr
)
rnn_1_1
=
paddle
.
layer
.
recurrent
(
name
=
'rnn1-1'
,
input
=
hidden_1
,
act
=
paddle
.
activation
.
Relu
(),
bias_attr
=
std_0
,
param_attr
=
rnn_para_attr
)
rnn_1_2
=
paddle
.
layer
.
recurrent
(
name
=
'rnn1-2'
,
input
=
hidden_1
,
act
=
paddle
.
activation
.
Relu
(),
reverse
=
1
,
bias_attr
=
std_0
,
param_attr
=
rnn_para_attr
)
hidden_2_1
=
paddle
.
layer
.
mixed
(
name
=
'hidden2-1'
,
size
=
hidden_dim
,
bias_attr
=
std_default
,
act
=
paddle
.
activation
.
STanh
(),
input
=
[
paddle
.
layer
.
full_matrix_projection
(
input
=
hidden_1
,
param_attr
=
hidden_para_attr
),
paddle
.
layer
.
full_matrix_projection
(
input
=
rnn_1_1
,
param_attr
=
rnn_para_attr
)
])
hidden_2_2
=
paddle
.
layer
.
mixed
(
name
=
'hidden2-2'
,
size
=
hidden_dim
,
bias_attr
=
std_default
,
act
=
paddle
.
activation
.
STanh
(),
input
=
[
paddle
.
layer
.
full_matrix_projection
(
input
=
hidden_1
,
param_attr
=
hidden_para_attr
),
paddle
.
layer
.
full_matrix_projection
(
input
=
rnn_1_2
,
param_attr
=
rnn_para_attr
)
])
rnn_2_1
=
paddle
.
layer
.
recurrent
(
name
=
'rnn2-1'
,
input
=
hidden_2_1
,
act
=
paddle
.
activation
.
Relu
(),
reverse
=
1
,
bias_attr
=
std_0
,
param_attr
=
rnn_para_attr
)
rnn_2_2
=
paddle
.
layer
.
recurrent
(
name
=
'rnn2-2'
,
input
=
hidden_2_2
,
act
=
paddle
.
activation
.
Relu
(),
bias_attr
=
std_0
,
param_attr
=
rnn_para_attr
)
hidden_3
=
paddle
.
layer
.
mixed
(
name
=
'hidden3'
,
size
=
hidden_dim
,
bias_attr
=
std_default
,
act
=
paddle
.
activation
.
STanh
(),
input
=
[
paddle
.
layer
.
full_matrix_projection
(
input
=
hidden_2_1
,
param_attr
=
hidden_para_attr
),
paddle
.
layer
.
full_matrix_projection
(
input
=
rnn_2_1
,
param_attr
=
rnn_para_attr
),
paddle
.
layer
.
full_matrix_projection
(
input
=
hidden_2_2
,
param_attr
=
hidden_para_attr
),
paddle
.
layer
.
full_matrix_projection
(
input
=
rnn_2_2
,
param_attr
=
rnn_para_attr
)
])
output
=
paddle
.
layer
.
mixed
(
name
=
'output'
,
size
=
label_dict_len
,
bias_attr
=
False
,
input
=
[
paddle
.
layer
.
full_matrix_projection
(
input
=
hidden_3
,
param_attr
=
std_default
)
])
if
is_train
:
target
=
paddle
.
layer
.
data
(
name
=
'target'
,
type
=
d_type
(
label_dict_len
))
crf_cost
=
paddle
.
layer
.
crf
(
size
=
label_dict_len
,
input
=
output
,
label
=
target
,
param_attr
=
paddle
.
attr
.
Param
(
name
=
'crfw'
,
initial_std
=
default_std
,
learning_rate
=
mix_hidden_lr
))
crf_dec
=
paddle
.
layer
.
crf_decoding
(
size
=
label_dict_len
,
input
=
output
,
label
=
target
,
param_attr
=
paddle
.
attr
.
Param
(
name
=
'crfw'
))
return
crf_cost
,
crf_dec
,
target
else
:
predict
=
paddle
.
layer
.
crf_decoding
(
size
=
label_dict_len
,
input
=
output
,
param_attr
=
paddle
.
attr
.
Param
(
name
=
'crfw'
))
return
predict
def
ner_net_train
(
data_reader
=
train_data_reader
,
num_passes
=
1
):
# define network topology
crf_cost
,
crf_dec
,
target
=
ner_net
(
is_train
=
True
)
evaluator
.
sum
(
name
=
'error'
,
input
=
crf_dec
)
evaluator
.
chunk
(
name
=
'ner_chunk'
,
input
=
crf_dec
,
label
=
target
,
chunk_scheme
=
'IOB'
,
num_chunk_types
=
(
label_dict_len
-
1
)
/
2
)
# create parameters
parameters
=
paddle
.
parameters
.
create
(
crf_cost
)
parameters
.
set
(
'emb'
,
word_vector_values
)
# create optimizer
optimizer
=
paddle
.
optimizer
.
Momentum
(
momentum
=
0
,
learning_rate
=
2e-4
,
regularization
=
paddle
.
optimizer
.
L2Regularization
(
rate
=
8e-4
),
gradient_clipping_threshold
=
25
,
model_average
=
paddle
.
optimizer
.
ModelAverage
(
average_window
=
0.5
,
max_average_window
=
10000
),
)
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
crf_cost
,
parameters
=
parameters
,
update_equation
=
optimizer
,
extra_layers
=
crf_dec
)
reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
data_reader
,
buf_size
=
8192
),
batch_size
=
64
)
feeding
=
{
'word'
:
0
,
'mark'
:
1
,
'target'
:
2
}
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
100
==
0
:
print
"Pass %d, Batch %d, Cost %f, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
)
if
event
.
batch_id
%
1000
==
0
:
result
=
trainer
.
test
(
reader
=
reader
,
feeding
=
feeding
)
print
"
\n
Test with Pass %d, Batch %d, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
result
.
metrics
)
if
isinstance
(
event
,
paddle
.
event
.
EndPass
):
# save parameters
with
gzip
.
open
(
'params_pass_%d.tar.gz'
%
event
.
pass_id
,
'w'
)
as
f
:
parameters
.
to_tar
(
f
)
result
=
trainer
.
test
(
reader
=
reader
,
feeding
=
feeding
)
print
"
\n
Test with Pass %d, %s"
%
(
event
.
pass_id
,
result
.
metrics
)
trainer
.
train
(
reader
=
reader
,
event_handler
=
event_handler
,
num_passes
=
num_passes
,
feeding
=
feeding
)
return
parameters
def
ner_net_infer
(
data_reader
=
test_data_reader
,
model_file
=
'ner_model.tar.gz'
):
test_data
=
[]
test_sentences
=
[]
for
item
in
data_reader
():
test_data
.
append
([
item
[
0
],
item
[
1
]])
test_sentences
.
append
(
item
[
-
1
])
if
len
(
test_data
)
==
10
:
break
predict
=
ner_net
(
is_train
=
False
)
lab_ids
=
paddle
.
infer
(
output_layer
=
predict
,
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
gzip
.
open
(
model_file
)),
input
=
test_data
,
field
=
'id'
)
flat_data
=
[
word
for
word
in
itertools
.
chain
.
from_iterable
(
test_sentences
)]
labels_reverse
=
{}
for
(
k
,
v
)
in
label_dict
.
items
():
labels_reverse
[
v
]
=
k
pre_lab
=
[
labels_reverse
[
lab_id
]
for
lab_id
in
lab_ids
]
for
word
,
label
in
zip
(
flat_data
,
pre_lab
):
print
word
,
label
if
__name__
==
'__main__'
:
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
ner_net_train
(
data_reader
=
train_data_reader
,
num_passes
=
1
)
ner_net_infer
(
data_reader
=
test_data_reader
,
model_file
=
'params_pass_0.tar.gz'
)
sequence_tagging_for_ner/network_conf.py
0 → 100644
浏览文件 @
132a26af
import
math
import
paddle.v2
as
paddle
import
paddle.v2.evaluator
as
evaluator
def
stacked_rnn
(
input_layer
,
hidden_size
,
hidden_para_attr
,
rnn_para_attr
,
stack_num
=
3
,
reverse
=
False
):
for
i
in
range
(
stack_num
):
hidden
=
paddle
.
layer
.
fc
(
size
=
hidden_size
,
act
=
paddle
.
activation
.
Tanh
(),
bias_attr
=
paddle
.
attr
.
Param
(
initial_std
=
1.
),
input
=
[
input_layer
]
if
not
i
else
[
hidden
,
rnn
],
param_attr
=
[
rnn_para_attr
]
if
not
i
else
[
hidden_para_attr
,
rnn_para_attr
])
rnn
=
paddle
.
layer
.
recurrent
(
input
=
hidden
,
act
=
paddle
.
activation
.
Relu
(),
bias_attr
=
paddle
.
attr
.
Param
(
initial_std
=
1.
),
reverse
=
reverse
,
param_attr
=
rnn_para_attr
)
return
hidden
,
rnn
def
ner_net
(
word_dict_len
,
label_dict_len
,
stack_num
=
3
,
is_train
=
True
):
mark_dict_len
=
2
word_dim
=
50
mark_dim
=
5
hidden_dim
=
128
word
=
paddle
.
layer
.
data
(
name
=
'word'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
word_dict_len
))
word_embedding
=
paddle
.
layer
.
embedding
(
input
=
word
,
size
=
word_dim
,
param_attr
=
paddle
.
attr
.
Param
(
name
=
'emb'
,
initial_std
=
math
.
sqrt
(
1.
/
word_dim
),
is_static
=
True
))
mark
=
paddle
.
layer
.
data
(
name
=
'mark'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
mark_dict_len
))
mark_embedding
=
paddle
.
layer
.
embedding
(
input
=
mark
,
size
=
mark_dim
,
param_attr
=
paddle
.
attr
.
Param
(
initial_std
=
math
.
sqrt
(
1.
/
word_dim
)))
emb_layers
=
[
word_embedding
,
mark_embedding
]
word_caps_vector
=
paddle
.
layer
.
concat
(
input
=
emb_layers
)
mix_hidden_lr
=
1e-3
rnn_para_attr
=
paddle
.
attr
.
Param
(
initial_std
=
0.0
,
learning_rate
=
0.1
)
hidden_para_attr
=
paddle
.
attr
.
Param
(
initial_std
=
1
/
math
.
sqrt
(
hidden_dim
),
learning_rate
=
mix_hidden_lr
)
forward_hidden
,
rnn_forward
=
stacked_rnn
(
word_caps_vector
,
hidden_dim
,
hidden_para_attr
,
rnn_para_attr
)
backward_hidden
,
rnn_backward
=
stacked_rnn
(
word_caps_vector
,
hidden_dim
,
hidden_para_attr
,
rnn_para_attr
,
reverse
=
True
)
fea
=
paddle
.
layer
.
fc
(
size
=
hidden_dim
,
bias_attr
=
paddle
.
attr
.
Param
(
initial_std
=
1.
),
act
=
paddle
.
activation
.
STanh
(),
input
=
[
forward_hidden
,
rnn_forward
,
backward_hidden
,
rnn_backward
],
param_attr
=
[
hidden_para_attr
,
rnn_para_attr
,
hidden_para_attr
,
rnn_para_attr
])
emission
=
paddle
.
layer
.
fc
(
size
=
label_dict_len
,
bias_attr
=
False
,
input
=
fea
,
param_attr
=
rnn_para_attr
)
if
is_train
:
target
=
paddle
.
layer
.
data
(
name
=
'target'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
label_dict_len
))
crf
=
paddle
.
layer
.
crf
(
size
=
label_dict_len
,
input
=
emission
,
label
=
target
,
param_attr
=
paddle
.
attr
.
Param
(
name
=
'crfw'
,
initial_std
=
1e-3
))
crf_dec
=
paddle
.
layer
.
crf_decoding
(
size
=
label_dict_len
,
input
=
emission
,
label
=
target
,
param_attr
=
paddle
.
attr
.
Param
(
name
=
'crfw'
))
return
crf
,
crf_dec
,
target
else
:
predict
=
paddle
.
layer
.
crf_decoding
(
size
=
label_dict_len
,
input
=
emission
,
param_attr
=
paddle
.
attr
.
Param
(
name
=
'crfw'
))
return
predict
sequence_tagging_for_ner/
conll03
.py
→
sequence_tagging_for_ner/
reader
.py
浏览文件 @
132a26af
...
...
@@ -2,16 +2,9 @@
Conll03 dataset.
"""
import
tarfile
import
gzip
import
itertools
import
collections
import
re
import
numpy
as
np
from
utils
import
*
__all__
=
[
'train'
,
'test'
,
'get_dict'
,
'get_embedding'
]
UNK_IDX
=
0
__all__
=
[
"data_reader"
]
def
canonicalize_digits
(
word
):
...
...
@@ -28,96 +21,48 @@ def canonicalize_word(word, wordset=None, digits=True):
if
(
wordset
!=
None
)
and
(
word
in
wordset
):
return
word
word
=
canonicalize_digits
(
word
)
# try to canonicalize numbers
if
(
wordset
==
None
)
or
(
word
in
wordset
):
return
word
else
:
return
"UUUNKKK"
# unknown token
else
:
return
"<UNK>"
# unknown token
def
load_dict
(
filename
):
d
=
dict
()
with
open
(
filename
,
'r'
)
as
f
:
for
i
,
line
in
enumerate
(
f
):
d
[
line
.
strip
()]
=
i
return
d
def
get_dict
(
vocab_file
=
'data/vocab.txt'
,
target_file
=
'data/target.txt'
):
"""
Get the word and label dictionary.
def
data_reader
(
data_file
,
word_dict
,
label_dict
):
"""
word_dict
=
load_dict
(
vocab_file
)
label_dict
=
load_dict
(
target_file
)
return
word_dict
,
label_dict
Conll03 train set creator.
The dataset can be obtained according to http://www.clips.uantwerpen.be/conll2003/ner/.
It returns a reader creator, each sample in the reader includes:
word id sequence, label id sequence and raw sentence.
def
get_embedding
(
emb_file
=
'data/wordVectors.txt'
):
"""
Get the trained word vector.
:return: reader creator
:rtype: callable
"""
return
np
.
loadtxt
(
emb_file
,
dtype
=
float
)
def
corpus_reader
(
filename
=
'data/train'
):
def
reader
():
UNK_IDX
=
word_dict
[
"<UNK>"
]
sentence
=
[]
labels
=
[]
with
open
(
filename
)
as
f
:
with
open
(
data_file
,
"r"
)
as
f
:
for
line
in
f
:
if
re
.
match
(
r
"-DOCSTART-.+"
,
line
)
or
(
len
(
line
.
strip
())
==
0
)
:
if
len
(
line
.
strip
())
==
0
:
if
len
(
sentence
)
>
0
:
yield
sentence
,
labels
word_idx
=
[
word_dict
.
get
(
canonicalize_word
(
w
,
word_dict
),
UNK_IDX
)
for
w
in
sentence
]
mark
=
[
1
if
w
[
0
].
isupper
()
else
0
for
w
in
sentence
]
label_idx
=
[
label_dict
[
l
]
for
l
in
labels
]
yield
word_idx
,
mark
,
label_idx
sentence
=
[]
labels
=
[]
else
:
segs
=
line
.
strip
().
split
()
sentence
.
append
(
segs
[
0
])
# transform
from
I-TYPE to BIO schema
if
segs
[
-
1
]
!=
'O'
and
(
len
(
labels
)
==
0
or
# transform I-TYPE to BIO schema
if
segs
[
-
1
]
!=
"O"
and
(
len
(
labels
)
==
0
or
labels
[
-
1
][
1
:]
!=
segs
[
-
1
][
1
:]):
labels
.
append
(
'B'
+
segs
[
-
1
][
1
:])
labels
.
append
(
"B"
+
segs
[
-
1
][
1
:])
else
:
labels
.
append
(
segs
[
-
1
])
f
.
close
()
return
reader
def
reader_creator
(
corpus_reader
,
word_dict
,
label_dict
):
"""
Conll03 train set creator.
The dataset can be obtained according to http://www.clips.uantwerpen.be/conll2003/ner/.
It returns a reader creator, each sample in the reader includes word id sequence, label id sequence and raw sentence for purpose of print.
:return: Training reader creator
:rtype: callable
"""
def
reader
():
for
sentence
,
labels
in
corpus_reader
():
word_idx
=
[
word_dict
.
get
(
canonicalize_word
(
w
,
word_dict
),
UNK_IDX
)
for
w
in
sentence
]
mark
=
[
1
if
w
[
0
].
isupper
()
else
0
for
w
in
sentence
]
label_idx
=
[
label_dict
.
get
(
w
)
for
w
in
labels
]
yield
word_idx
,
mark
,
label_idx
,
sentence
return
reader
def
train
(
data_file
=
'data/train'
,
vocab_file
=
'data/vocab.txt'
,
target_file
=
'data/target.txt'
):
return
reader_creator
(
corpus_reader
(
data_file
),
word_dict
=
load_dict
(
vocab_file
),
label_dict
=
load_dict
(
target_file
))
def
test
(
data_file
=
'data/test'
,
vocab_file
=
'data/vocab.txt'
,
target_file
=
'data/target.txt'
):
return
reader_creator
(
corpus_reader
(
data_file
),
word_dict
=
load_dict
(
vocab_file
),
label_dict
=
load_dict
(
target_file
))
sequence_tagging_for_ner/train.py
0 → 100644
浏览文件 @
132a26af
import
gzip
import
numpy
as
np
import
reader
from
utils
import
*
from
network_conf
import
*
def
main
(
train_data_file
,
test_data_file
,
vocab_file
,
target_file
,
emb_file
,
num_passes
=
10
,
batch_size
=
32
):
word_dict
=
load_dict
(
vocab_file
)
label_dict
=
load_dict
(
target_file
)
word_vector_values
=
get_embedding
(
emb_file
)
word_dict_len
=
len
(
word_dict
)
label_dict_len
=
len
(
label_dict
)
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
# define network topology
crf_cost
,
crf_dec
,
target
=
ner_net
(
word_dict_len
,
label_dict_len
)
evaluator
.
sum
(
name
=
"error"
,
input
=
crf_dec
)
evaluator
.
chunk
(
name
=
"ner_chunk"
,
input
=
crf_dec
,
label
=
target
,
chunk_scheme
=
"IOB"
,
num_chunk_types
=
(
label_dict_len
-
1
)
/
2
)
# create parameters
parameters
=
paddle
.
parameters
.
create
(
crf_cost
)
parameters
.
set
(
"emb"
,
word_vector_values
)
# create optimizer
optimizer
=
paddle
.
optimizer
.
Momentum
(
momentum
=
0
,
learning_rate
=
2e-4
,
regularization
=
paddle
.
optimizer
.
L2Regularization
(
rate
=
8e-4
),
gradient_clipping_threshold
=
25
,
model_average
=
paddle
.
optimizer
.
ModelAverage
(
average_window
=
0.5
,
max_average_window
=
10000
),
)
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
crf_cost
,
parameters
=
parameters
,
update_equation
=
optimizer
,
extra_layers
=
crf_dec
)
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
reader
.
data_reader
(
train_data_file
,
word_dict
,
label_dict
),
buf_size
=
1000
),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
reader
.
data_reader
(
test_data_file
,
word_dict
,
label_dict
),
buf_size
=
1000
),
batch_size
=
batch_size
)
feeding
=
{
"word"
:
0
,
"mark"
:
1
,
"target"
:
2
}
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
1
==
0
:
logger
.
info
(
"Pass %d, Batch %d, Cost %f, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
))
if
event
.
batch_id
%
1
==
0
:
result
=
trainer
.
test
(
reader
=
test_reader
,
feeding
=
feeding
)
logger
.
info
(
"
\n
Test with Pass %d, Batch %d, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
result
.
metrics
))
if
isinstance
(
event
,
paddle
.
event
.
EndPass
):
# save parameters
with
gzip
.
open
(
"models/params_pass_%d.tar.gz"
%
event
.
pass_id
,
"w"
)
as
f
:
parameters
.
to_tar
(
f
)
result
=
trainer
.
test
(
reader
=
test_reader
,
feeding
=
feeding
)
logger
.
info
(
"
\n
Test with Pass %d, %s"
%
(
event
.
pass_id
,
result
.
metrics
))
trainer
.
train
(
reader
=
train_reader
,
event_handler
=
event_handler
,
num_passes
=
num_passes
,
feeding
=
feeding
)
if
__name__
==
"__main__"
:
main
(
train_data_file
=
'data/train'
,
test_data_file
=
'data/test'
,
vocab_file
=
'data/vocab.txt'
,
target_file
=
'data/target.txt'
,
emb_file
=
'data/wordVectors.txt'
)
sequence_tagging_for_ner/utils.py
0 → 100644
浏览文件 @
132a26af
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import
logging
import
os
import
re
import
argparse
import
numpy
as
np
from
collections
import
defaultdict
logger
=
logging
.
getLogger
(
"logger"
)
logger
.
setLevel
(
logging
.
INFO
)
def
get_embedding
(
emb_file
=
'data/wordVectors.txt'
):
"""
Get the trained word vector.
"""
return
np
.
loadtxt
(
emb_file
,
dtype
=
float
)
def
load_dict
(
dict_path
):
return
dict
((
line
.
strip
().
split
(
"
\t
"
)[
0
],
idx
)
for
idx
,
line
in
enumerate
(
open
(
dict_path
,
"r"
).
readlines
()))
def
load_reverse_dict
(
dict_path
):
return
dict
((
idx
,
line
.
strip
().
split
(
"
\t
"
)[
0
])
for
idx
,
line
in
enumerate
(
open
(
dict_path
,
"r"
).
readlines
()))
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录