未验证 提交 1137c0c0 编写于 作者: S SunGaofeng 提交者: GitHub

Revert "fix fluid.data and fluid.io.DataLoader (#3533)" (#3560)

This reverts commit 0be3697c.
上级 8be4d011
......@@ -25,7 +25,7 @@
## 安装
在当前模型库运行样例代码需要PaddlePaddle Fluid v.1.6.0或以上的版本。如果你的运行环境中的PaddlePaddle低于此版本,请根据[安装文档](http://www.paddlepaddle.org/documentation/docs/zh/1.6/beginners_guide/install/index_cn.html)中的说明来更新PaddlePaddle。
在当前模型库运行样例代码需要PaddlePaddle Fluid v.1.5.0或以上的版本。如果你的运行环境中的PaddlePaddle低于此版本,请根据[安装文档](http://www.paddlepaddle.org/documentation/docs/zh/1.5/beginners_guide/install/index_cn.html)中的说明来更新PaddlePaddle。
### 其他环境依赖
......
......@@ -26,7 +26,6 @@ import models
from reader import get_reader
from metrics import get_metrics
from utils.utility import check_cuda
from utils.utility import check_version
logging.root.handlers = []
FORMAT = '[%(levelname)s: %(filename)s: %(lineno)4d]: %(message)s'
......@@ -84,7 +83,7 @@ def test(args):
# build model
test_model = models.get_model(args.model_name, test_config, mode='test')
test_model.build_input(use_dataloader=False)
test_model.build_input(use_pyreader=False)
test_model.build_model()
test_feeds = test_model.feeds()
test_fetch_list = test_model.fetches()
......@@ -131,7 +130,6 @@ if __name__ == "__main__":
args = parse_args()
# check whether the installed paddle is compiled with GPU
check_cuda(args.use_gpu)
check_version()
logger.info(args)
test(args)
......@@ -80,7 +80,7 @@ def save_inference_model(args):
infer_config = merge_configs(config, 'infer', vars(args))
print_configs(infer_config, "Infer")
infer_model = models.get_model(args.model_name, infer_config, mode='infer')
infer_model.build_input(use_dataloader=False)
infer_model.build_input(use_pyreader=False)
infer_model.build_model()
infer_feeds = infer_model.feeds()
infer_outputs = infer_model.outputs()
......
......@@ -41,21 +41,21 @@ class AttentionCluster(ModelBase):
self.learning_rate = self.get_config_from_sec('train',
'learning_rate', 1e-3)
def build_input(self, use_dataloader=True):
def build_input(self, use_pyreader=True):
self.feature_input = []
for name, dim in zip(self.feature_names, self.feature_dims):
self.feature_input.append(
fluid.data(
shape=[None, self.seg_num, dim], dtype='float32', name=name))
fluid.layers.data(
shape=[self.seg_num, dim], dtype='float32', name=name))
if self.mode != 'infer':
self.label_input = fluid.data(
shape=[None, self.class_num], dtype='float32', name='label')
self.label_input = fluid.layers.data(
shape=[self.class_num], dtype='float32', name='label')
else:
self.label_input = None
if use_dataloader:
if use_pyreader:
assert self.mode != 'infer', \
'dataloader is not recommendated when infer, please set use_dataloader to be false.'
self.dataloader = fluid.io.DataLoader.from_generator(
'pyreader is not recommendated when infer, please set use_pyreader to be false.'
self.py_reader = fluid.io.PyReader(
feed_list=self.feature_input + [self.label_input],
capacity=8,
iterable=True)
......
......@@ -52,21 +52,21 @@ class AttentionLSTM(ModelBase):
self.decay_gamma = self.get_config_from_sec('train', 'decay_gamma',
0.1)
def build_input(self, use_dataloader):
def build_input(self, use_pyreader):
self.feature_input = []
for name, dim in zip(self.feature_names, self.feature_dims):
self.feature_input.append(
fluid.data(
shape=[None, dim], lod_level=1, dtype='float32', name=name))
fluid.layers.data(
shape=[dim], lod_level=1, dtype='float32', name=name))
if self.mode != 'infer':
self.label_input = fluid.data(
shape=[None, self.num_classes], dtype='float32', name='label')
self.label_input = fluid.layers.data(
shape=[self.num_classes], dtype='float32', name='label')
else:
self.label_input = None
if use_dataloader:
if use_pyreader:
assert self.mode != 'infer', \
'dataloader is not recommendated when infer, please set use_dataloader to be false.'
self.dataloader = fluid.io.DataLoader.from_generator(
'pyreader is not recommendated when infer, please set use_pyreader to be false.'
self.py_reader = fluid.io.PyReader(
feed_list=self.feature_input + [self.label_input],
capacity=8,
iterable=True)
......
......@@ -52,46 +52,47 @@ class BMN(ModelBase):
'l2_weight_decay')
self.lr_decay_iter = self.get_config_from_sec('train', 'lr_decay_iter')
def build_input(self, use_dataloader=True):
feat_shape = [None, self.feat_dim, self.tscale]
gt_iou_map_shape = [None, self.dscale, self.tscale]
gt_start_shape = [None, self.tscale]
gt_end_shape = [None, self.tscale]
fileid_shape = [None, 1]
self.use_dataloader = use_dataloader
def build_input(self, use_pyreader=True):
feat_shape = [self.feat_dim, self.tscale]
gt_iou_map_shape = [self.dscale, self.tscale]
gt_start_shape = [self.tscale]
gt_end_shape = [self.tscale]
fileid_shape = [1]
self.use_pyreader = use_pyreader
# set init data to None
py_reader = None
feat = None
gt_iou_map = None
gt_start = None
gt_end = None
fileid = None
feat = fluid.data(name='feat', shape=feat_shape, dtype='float32')
feat = fluid.layers.data(name='feat', shape=feat_shape, dtype='float32')
feed_list = []
feed_list.append(feat)
if (self.mode == 'train') or (self.mode == 'valid'):
gt_start = fluid.data(
gt_start = fluid.layers.data(
name='gt_start', shape=gt_start_shape, dtype='float32')
gt_end = fluid.data(
gt_end = fluid.layers.data(
name='gt_end', shape=gt_end_shape, dtype='float32')
gt_iou_map = fluid.data(
gt_iou_map = fluid.layers.data(
name='gt_iou_map', shape=gt_iou_map_shape, dtype='float32')
feed_list.append(gt_iou_map)
feed_list.append(gt_start)
feed_list.append(gt_end)
elif self.mode == 'test':
gt_start = fluid.data(
gt_start = fluid.layers.data(
name='gt_start', shape=gt_start_shape, dtype='float32')
gt_end = fluid.data(
gt_end = fluid.layers.data(
name='gt_end', shape=gt_end_shape, dtype='float32')
gt_iou_map = fluid.data(
gt_iou_map = fluid.layers.data(
name='gt_iou_map', shape=gt_iou_map_shape, dtype='float32')
feed_list.append(gt_iou_map)
feed_list.append(gt_start)
feed_list.append(gt_end)
fileid = fluid.data(
fileid = fluid.layers.data(
name='fileid', shape=fileid_shape, dtype='int64')
feed_list.append(fileid)
elif self.mode == 'infer':
......@@ -101,11 +102,11 @@ class BMN(ModelBase):
raise NotImplementedError('mode {} not implemented'.format(
self.mode))
if use_dataloader:
if use_pyreader:
assert self.mode != 'infer', \
'dataloader is not recommendated when infer, please set use_dataloader to be false.'
self.dataloader = fluid.io.DataLoader.from_generator(
feed_list=feed_list, capacity=8, iterable=True)
'pyreader is not recommendated when infer, please set use_pyreader to be false.'
self.py_reader = fluid.io.PyReader(
feed_list=feed_list, capacity=8, iterable=True)
self.feat_input = [feat]
self.gt_iou_map = gt_iou_map
......
......@@ -47,46 +47,47 @@ class BsnTem(ModelBase):
'l2_weight_decay')
self.lr_decay_iter = self.get_config_from_sec('train', 'lr_decay_iter')
def build_input(self, use_dataloader=True):
feat_shape = [None, self.feat_dim, self.tscale]
gt_start_shape = [None, self.tscale]
gt_end_shape = [None, self.tscale]
gt_action_shape = [None, self.tscale]
fileid_shape = [None, 1]
self.use_dataloader = use_dataloader
def build_input(self, use_pyreader=True):
feat_shape = [self.feat_dim, self.tscale]
gt_start_shape = [self.tscale]
gt_end_shape = [self.tscale]
gt_action_shape = [self.tscale]
fileid_shape = [1]
self.use_pyreader = use_pyreader
# set init data to None
py_reader = None
feat = None
gt_start = None
gt_end = None
gt_action = None
fileid = None
feat = fluid.data(name='feat', shape=feat_shape, dtype='float32')
feat = fluid.layers.data(name='feat', shape=feat_shape, dtype='float32')
feed_list = []
feed_list.append(feat)
if (self.mode == 'train') or (self.mode == 'valid'):
gt_start = fluid.data(
gt_start = fluid.layers.data(
name='gt_start', shape=gt_start_shape, dtype='float32')
gt_end = fluid.data(
gt_end = fluid.layers.data(
name='gt_end', shape=gt_end_shape, dtype='float32')
gt_action = fluid.data(
gt_action = fluid.layers.data(
name='gt_action', shape=gt_action_shape, dtype='float32')
feed_list.append(gt_start)
feed_list.append(gt_end)
feed_list.append(gt_action)
elif self.mode == 'test':
gt_start = fluid.data(
gt_start = fluid.layers.data(
name='gt_start', shape=gt_start_shape, dtype='float32')
gt_end = fluid.data(
gt_end = fluid.layers.data(
name='gt_end', shape=gt_end_shape, dtype='float32')
gt_action = fluid.data(
gt_action = fluid.layers.data(
name='gt_action', shape=gt_action_shape, dtype='float32')
feed_list.append(gt_start)
feed_list.append(gt_end)
feed_list.append(gt_action)
fileid = fluid.data(
fileid = fluid.layers.data(
name='fileid', shape=fileid_shape, dtype='int64')
feed_list.append(fileid)
elif self.mode == 'infer':
......@@ -96,11 +97,11 @@ class BsnTem(ModelBase):
raise NotImplementedError('mode {} not implemented'.format(
self.mode))
if use_dataloader:
if use_pyreader:
assert self.mode != 'infer', \
'dataloader is not recommendated when infer, please set use_dataloader to be false.'
self.dataloader = fluid.io.DataLoader.from_generator(
feed_list=feed_list, capacity=8, iterable=True)
'pyreader is not recommendated when infer, please set use_pyreader to be false.'
self.py_reader = fluid.io.PyReader(
feed_list=feed_list, capacity=8, iterable=True)
self.feat_input = [feat]
self.gt_start = gt_start
......@@ -211,50 +212,51 @@ class BsnPem(ModelBase):
'l2_weight_decay')
self.lr_decay_iter = self.get_config_from_sec('train', 'lr_decay_iter')
def build_input(self, use_dataloader=True):
feat_shape = [None, self.top_K, self.feat_dim]
gt_iou_shape = [None. self.top_K, 1]
props_info_shape = [None, self.top_K, 4]
fileid_shape = [None, 1]
self.use_dataloader = use_dataloader
def build_input(self, use_pyreader=True):
feat_shape = [self.top_K, self.feat_dim]
gt_iou_shape = [self.top_K, 1]
props_info_shape = [self.top_K, 4]
fileid_shape = [1]
self.use_pyreader = use_pyreader
# set init data to None
py_reader = None
feat = None
gt_iou = None
props_info = None
fileid = None
feat = fluid.data(name='feat', shape=feat_shape, dtype='float32')
feat = fluid.layers.data(name='feat', shape=feat_shape, dtype='float32')
feed_list = []
feed_list.append(feat)
if (self.mode == 'train') or (self.mode == 'valid'):
gt_iou = fluid.data(
gt_iou = fluid.layers.data(
name='gt_iou', shape=gt_iou_shape, dtype='float32')
feed_list.append(gt_iou)
elif self.mode == 'test':
gt_iou = fluid.data(
gt_iou = fluid.layers.data(
name='gt_iou', shape=gt_iou_shape, dtype='float32')
props_info = fluid.data(
props_info = fluid.layers.data(
name='props_info', shape=props_info_shape, dtype='float32')
feed_list.append(gt_iou)
feed_list.append(props_info)
fileid = fluid.data(
fileid = fluid.layers.data(
name='fileid', shape=fileid_shape, dtype='int64')
feed_list.append(fileid)
elif self.mode == 'infer':
props_info = fluid.data(
props_info = fluid.layers.data(
name='props_info', shape=props_info_shape, dtype='float32')
feed_list.append(props_info)
else:
raise NotImplementedError('mode {} not implemented'.format(
self.mode))
if use_dataloader:
if use_pyreader:
assert self.mode != 'infer', \
'dataloader is not recommendated when infer, please set use_dataloader to be false.'
self.dataloader = fluid.io.DataLoader.from_generator(
feed_list=feed_list, capacity=4, iterable=True)
'pyreader is not recommendated when infer, please set use_pyreader to be false.'
self.py_reader = fluid.io.PyReader(
feed_list=feed_list, capacity=4, iterable=True)
self.feat_input = [feat]
self.gt_iou = gt_iou
......
......@@ -51,36 +51,37 @@ class CTCN(ModelBase):
self.momentum = self.get_config_from_sec('train', 'momentum')
self.lr_decay_iter = self.get_config_from_sec('train', 'lr_decay_iter')
def build_input(self, use_dataloader=True):
image_shape = [None, 1, self.img_size, self.concept_size]
loc_shape = [None, self.total_num_anchors, 2]
cls_shape = [None, self.total_num_anchors]
fileid_shape = [None, 1]
self.use_dataloader = use_dataloader
def build_input(self, use_pyreader=True):
image_shape = [1, self.img_size, self.concept_size]
loc_shape = [self.total_num_anchors, 2]
cls_shape = [self.total_num_anchors]
fileid_shape = [1]
self.use_pyreader = use_pyreader
# set init data to None
py_reader = None
image = None
loc_targets = None
cls_targets = None
fileid = None
image = fluid.data(
image = fluid.layers.data(
name='image', shape=image_shape, dtype='float32')
feed_list = []
feed_list.append(image)
if (self.mode == 'train') or (self.mode == 'valid'):
loc_targets = fluid.data(
loc_targets = fluid.layers.data(
name='loc_targets', shape=loc_shape, dtype='float32')
cls_targets = fluid.data(
cls_targets = fluid.layers.data(
name='cls_targets', shape=cls_shape, dtype='int64')
feed_list.append(loc_targets)
feed_list.append(cls_targets)
elif self.mode == 'test':
loc_targets = fluid.data(
loc_targets = fluid.layers.data(
name='loc_targets', shape=loc_shape, dtype='float32')
cls_targets = fluid.data(
cls_targets = fluid.layers.data(
name='cls_targets', shape=cls_shape, dtype='int64')
fileid = fluid.data(
fileid = fluid.layers.data(
name='fileid', shape=fileid_shape, dtype='int64')
feed_list.append(loc_targets)
feed_list.append(cls_targets)
......@@ -92,11 +93,11 @@ class CTCN(ModelBase):
raise NotImplementedError('mode {} not implemented'.format(
self.mode))
if use_dataloader:
if use_pyreader:
assert self.mode != 'infer', \
'dataloader is not recommendated when infer, please set use_dataloader to be false.'
self.dataloader = fluid.io.DataLoader.from_generator(
feed_list=feed_list, capacity=4, iterable=True)
'pyreader is not recommendated when infer, please set use_pyreader to be false.'
self.py_reader = fluid.io.PyReader(
feed_list=feed_list, capacity=4, iterable=True)
self.feature_input = [image]
self.cls_targets = cls_targets
......
......@@ -65,13 +65,13 @@ class ModelBase(object):
self.is_training = (mode == 'train')
self.mode = mode
self.cfg = cfg
self.dataloader = None
self.py_reader = None
def build_model(self):
"build model struct"
raise NotImplementError(self, self.build_model)
def build_input(self, use_dataloader):
def build_input(self, use_pyreader):
"build input Variable"
raise NotImplementError(self, self.build_input)
......@@ -114,8 +114,8 @@ class ModelBase(object):
wget.download(url, path)
return path
def dataloader(self):
return self.dataloader
def pyreader(self):
return self.py_reader
def epoch_num(self):
"get train epoch num"
......
......@@ -61,17 +61,17 @@ class NEXTVLAD(ModelBase):
# other params
self.batch_size = self.get_config_from_sec(self.mode, 'batch_size')
def build_input(self, use_dataloader=True):
rgb_shape = [None, self.video_feature_size]
audio_shape = [None, self.audio_feature_size]
label_shape = [None, self.num_classes]
def build_input(self, use_pyreader=True):
rgb_shape = [self.video_feature_size]
audio_shape = [self.audio_feature_size]
label_shape = [self.num_classes]
rgb = fluid.data(
rgb = fluid.layers.data(
name='train_rgb' if self.is_training else 'test_rgb',
shape=rgb_shape,
dtype='uint8',
lod_level=1)
audio = fluid.data(
audio = fluid.layers.data(
name='train_audio' if self.is_training else 'test_audio',
shape=audio_shape,
dtype='uint8',
......@@ -79,16 +79,16 @@ class NEXTVLAD(ModelBase):
if self.mode == 'infer':
label = None
else:
label = fluid.data(
label = fluid.layers.data(
name='train_label' if self.is_training else 'test_label',
shape=label_shape,
dtype='float32')
if use_dataloader:
if use_pyreader:
assert self.mode != 'infer', \
'dataloader is not recommendated when infer, please set use_dataloader to be false.'
self.dataloader = fluid.io.DataLoader.from_generator(
feed_list=[rgb, audio, label], capacity=8, iterable=True)
'pyreader is not recommendated when infer, please set use_pyreader to be false.'
self.py_reader = fluid.io.PyReader(
feed_list=[rgb, audio, label], capacity=8, iterable=True)
self.feature_input = [rgb, audio]
self.label_input = label
......
......@@ -39,27 +39,27 @@ class NonLocal(ModelBase):
# crop size
self.crop_size = self.get_config_from_sec(self.mode, 'crop_size')
def build_input(self, use_dataloader=True):
input_shape = [None, 3, self.video_length, self.crop_size, self.crop_size]
label_shape = [None, 1]
def build_input(self, use_pyreader=True):
input_shape = [3, self.video_length, self.crop_size, self.crop_size]
label_shape = [1]
data = fluid.data(
data = fluid.layers.data(
name='train_data' if self.is_training else 'test_data',
shape=input_shape,
dtype='float32')
if self.mode != 'infer':
label = fluid.data(
label = fluid.layers.data(
name='train_label' if self.is_training else 'test_label',
shape=label_shape,
dtype='int64')
else:
label = None
if use_dataloader:
if use_pyreader:
assert self.mode != 'infer', \
'dataloader is not recommendated when infer, please set use_dataloader to be false.'
self.dataloader = fluid.io.DataLoader.from_generator(
feed_list=[data, label], capacity=4, iterable=True)
'pyreader is not recommendated when infer, please set use_pyreader to be false.'
self.py_reader = fluid.io.PyReader(
feed_list=[data, label], capacity=4, iterable=True)
self.feature_input = [data]
self.label_input = label
......
......@@ -51,24 +51,25 @@ class STNET(ModelBase):
self.target_size = self.get_config_from_sec(self.mode, 'target_size')
self.batch_size = self.get_config_from_sec(self.mode, 'batch_size')
def build_input(self, use_dataloader=True):
def build_input(self, use_pyreader=True):
image_shape = [3, self.target_size, self.target_size]
image_shape[0] = image_shape[0] * self.seglen
image_shape = [None, self.seg_num] + image_shape
self.use_dataloader = use_dataloader
image_shape = [self.seg_num] + image_shape
self.use_pyreader = use_pyreader
image = fluid.data(
image = fluid.layers.data(
name='image', shape=image_shape, dtype='float32')
if self.mode != 'infer':
label = fluid.data(name='label', shape=[None, 1], dtype='int64')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
else:
label = None
if use_dataloader:
if use_pyreader:
assert self.mode != 'infer', \
'dataloader is not recommendated when infer, please set use_dataloader to be false.'
self.dataloader = fluid.io.DataLoader.from_generator(
feed_list=[image, label], capacity=4, iterable=True)
'pyreader is not recommendated when infer, please set use_pyreader to be false.'
py_reader = fluid.io.PyReader(
feed_list=[image, label], capacity=4, iterable=True)
self.py_reader = py_reader
self.feature_input = [image]
self.label_input = label
......@@ -166,4 +167,3 @@ class STNET(ModelBase):
param_numpy = np.mean(param_numpy, axis=1, keepdims=True) / self.seglen
param_numpy = np.repeat(param_numpy, 3 * self.seglen, axis=1)
param_tensor.set(param_numpy.astype(np.float32), place)
......@@ -51,24 +51,25 @@ class TSM(ModelBase):
self.target_size = self.get_config_from_sec(self.mode, 'target_size')
self.batch_size = self.get_config_from_sec(self.mode, 'batch_size')
def build_input(self, use_dataloader=True):
def build_input(self, use_pyreader=True):
image_shape = [3, self.target_size, self.target_size]
image_shape[0] = image_shape[0] * self.seglen
image_shape = [None, self.seg_num] + image_shape
self.use_dataloader = use_dataloader
image_shape = [self.seg_num] + image_shape
self.use_pyreader = use_pyreader
image = fluid.data(
image = fluid.layers.data(
name='image', shape=image_shape, dtype='float32')
if self.mode != 'infer':
label = fluid.data(name='label', shape=[None, 1], dtype='int64')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
else:
label = None
if use_dataloader:
if use_pyreader:
assert self.mode != 'infer', \
'dataloader is not recommendated when infer, please set use_dataloader to be false.'
self.dataloader = fluid.io.DataLoader.from_generator(
feed_list=[image, label], capacity=4, iterable=True)
'pyreader is not recommendated when infer, please set use_pyreader to be false.'
py_reader = fluid.io.PyReader(
feed_list=[image, label], capacity=4, iterable=True)
self.py_reader = py_reader
self.feature_input = [image]
self.label_input = label
......
......@@ -52,24 +52,25 @@ class TSN(ModelBase):
self.target_size = self.get_config_from_sec(self.mode, 'target_size')
self.batch_size = self.get_config_from_sec(self.mode, 'batch_size')
def build_input(self, use_dataloader=True):
def build_input(self, use_pyreader=True):
image_shape = [3, self.target_size, self.target_size]
image_shape[0] = image_shape[0] * self.seglen
image_shape = [None, self.seg_num] + image_shape
self.use_dataloader = use_dataloader
image_shape = [self.seg_num] + image_shape
self.use_pyreader = use_pyreader
image = fluid.data(
image = fluid.layers.data(
name='image', shape=image_shape, dtype='float32')
if self.mode != 'infer':
label = fluid.data(name='label', shape=[None, 1], dtype='int64')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
else:
label = None
if use_dataloader:
if use_pyreader:
assert self.mode != 'infer', \
'dataloader is not recommendated when infer, please set use_dataloader to be false.'
self.dataloader = fluid.io.DataLoader.from_generator(
feed_list=[image, label], capacity=4, iterable=True)
'pyreader is not recommendated when infer, please set use_pyreader to be false.'
py_reader = fluid.io.PyReader(
feed_list=[image, label], capacity=4, iterable=True)
self.py_reader = py_reader
self.feature_input = [image]
self.label_input = label
......
......@@ -30,7 +30,6 @@ import models
from reader import get_reader
from metrics import get_metrics
from utils.utility import check_cuda
from utils.utility import check_version
logging.root.handlers = []
FORMAT = '[%(levelname)s: %(filename)s: %(lineno)4d]: %(message)s'
......@@ -101,7 +100,7 @@ def infer(args):
infer_config = merge_configs(config, 'infer', vars(args))
print_configs(infer_config, "Infer")
infer_model = models.get_model(args.model_name, infer_config, mode='infer')
infer_model.build_input(use_dataloader=False)
infer_model.build_input(use_pyreader=False)
infer_model.build_model()
infer_feeds = infer_model.feeds()
infer_outputs = infer_model.outputs()
......@@ -166,7 +165,6 @@ if __name__ == "__main__":
args = parse_args()
# check whether the installed paddle is compiled with GPU
check_cuda(args.use_gpu)
check_version()
logger.info(args)
infer(args)
......@@ -21,13 +21,12 @@ import logging
import numpy as np
import paddle.fluid as fluid
from utils.train_utils import train_with_dataloader
from utils.train_utils import train_with_pyreader
import models
from utils.config_utils import *
from reader import get_reader
from metrics import get_metrics
from utils.utility import check_cuda
from utils.utility import check_version
logging.root.handlers = []
FORMAT = '[%(levelname)s: %(filename)s: %(lineno)4d]: %(message)s'
......@@ -125,7 +124,7 @@ def train(args):
train_prog.random_seed = 1000
with fluid.program_guard(train_prog, startup):
with fluid.unique_name.guard():
train_model.build_input(use_dataloader=True)
train_model.build_input(use_pyreader=True)
train_model.build_model()
# for the input, has the form [data1, data2,..., label], so train_feeds[-1] is label
train_feeds = train_model.feeds()
......@@ -135,16 +134,16 @@ def train(args):
item.persistable = True
optimizer = train_model.optimizer()
optimizer.minimize(train_loss)
train_dataloader = train_model.dataloader()
train_pyreader = train_model.pyreader()
valid_prog = fluid.Program()
with fluid.program_guard(valid_prog, startup):
with fluid.unique_name.guard():
valid_model.build_input(use_dataloader=True)
valid_model.build_input(use_pyreader=True)
valid_model.build_model()
valid_feeds = valid_model.feeds()
valid_fetch_list = valid_model.fetches()
valid_dataloader = valid_model.dataloader()
valid_pyreader = valid_model.pyreader()
for item in valid_fetch_list:
item.persistable = True
......@@ -191,8 +190,8 @@ def train(args):
gpus = gpus.split(",")
num_gpus = len(gpus)
assert num_gpus == train_config.TRAIN.num_gpus, \
"num_gpus({}) set by CUDA_VISIBLE_DEVICES " \
"shoud be the same as that " \
"num_gpus({}) set by CUDA_VISIBLE_DEVICES" \
"shoud be the same as that" \
"set in {}({})".format(
num_gpus, args.config, train_config.TRAIN.num_gpus)
bs_denominator = train_config.TRAIN.num_gpus
......@@ -211,16 +210,16 @@ def train(args):
epochs = args.epoch or train_model.epoch_num()
exe_places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places()
train_dataloader.set_sample_list_generator(
train_pyreader.decorate_sample_list_generator(
train_reader, places=exe_places)
valid_dataloader.set_sample_list_generator(
valid_pyreader.decorate_sample_list_generator(
valid_reader, places=exe_places)
train_with_dataloader(
train_with_pyreader(
exe,
train_prog,
compiled_train_prog, #train_exe,
train_dataloader,
train_pyreader,
train_fetch_list,
train_metrics,
epochs=epochs,
......@@ -230,7 +229,7 @@ def train(args):
save_model_name=args.model_name,
fix_random_seed=args.fix_random_seed,
compiled_test_prog=compiled_valid_prog, #test_exe=valid_exe,
test_dataloader=valid_dataloader,
test_pyreader=valid_pyreader,
test_fetch_list=valid_fetch_list,
test_metrics=valid_metrics)
......@@ -239,7 +238,6 @@ if __name__ == "__main__":
args = parse_args()
# check whether the installed paddle is compiled with GPU
check_cuda(args.use_gpu)
check_version()
logger.info(args)
if not os.path.exists(args.save_dir):
......
......@@ -47,19 +47,19 @@ def log_lr_and_step():
logger.warn("Unable to get learning_rate and LR_DECAY_COUNTER.")
def test_with_dataloader(exe,
def test_with_pyreader(exe,
compiled_test_prog,
test_dataloader,
test_pyreader,
test_fetch_list,
test_metrics,
log_interval=0,
save_model_name=''):
if not test_dataloader:
logger.error("[TEST] get dataloader failed.")
if not test_pyreader:
logger.error("[TEST] get pyreader failed.")
test_metrics.reset()
test_iter = 0
for data in test_dataloader():
for data in test_pyreader():
test_outs = exe.run(compiled_test_prog,
fetch_list=test_fetch_list,
feed=data)
......@@ -71,14 +71,14 @@ def test_with_dataloader(exe,
test_metrics.finalize_and_log_out("[TEST] Finish")
def train_with_dataloader(exe, train_prog, compiled_train_prog, train_dataloader, \
def train_with_pyreader(exe, train_prog, compiled_train_prog, train_pyreader, \
train_fetch_list, train_metrics, epochs = 10, \
log_interval = 0, valid_interval = 0, save_dir = './', \
save_model_name = 'model', fix_random_seed = False, \
compiled_test_prog = None, test_dataloader = None, \
compiled_test_prog = None, test_pyreader = None, \
test_fetch_list = None, test_metrics = None):
if not train_dataloader:
logger.error("[TRAIN] get dataloader failed.")
if not train_pyreader:
logger.error("[TRAIN] get pyreader failed.")
epoch_periods = []
train_loss = 0
for epoch in range(epochs):
......@@ -87,7 +87,7 @@ def train_with_dataloader(exe, train_prog, compiled_train_prog, train_dataloader
train_iter = 0
epoch_periods = []
for data in train_dataloader():
for data in train_pyreader():
cur_time = time.time()
train_outs = exe.run(compiled_train_prog,
fetch_list=train_fetch_list,
......@@ -122,7 +122,7 @@ def train_with_dataloader(exe, train_prog, compiled_train_prog, train_dataloader
save_type='.pdparams')
if compiled_test_prog and valid_interval > 0 and (
epoch + 1) % valid_interval == 0:
test_with_dataloader(exe, compiled_test_prog, test_dataloader,
test_with_pyreader(exe, compiled_test_prog, test_pyreader,
test_fetch_list, test_metrics, log_interval,
save_model_name)
......
......@@ -14,13 +14,11 @@
import os
import signal
import logging
import paddle
import paddle.fluid as fluid
__all__ = ['AttrDict']
logger = logging.getLogger(__name__)
def _term(sig_num, addition):
print('current pid is %s, group id is %s' % (os.getpid(), os.getpgrp()))
......@@ -51,18 +49,3 @@ def check_cuda(use_cuda, err = \
sys.exit(1)
except Exception as e:
pass
def check_version():
"""
Log error and exit when the installed version of paddlepaddle is
not satisfied.
"""
err = "PaddlePaddle version 1.6 or higher is required, " \
"or a suitable develop version is satisfied as well. \n" \
"Please make sure the version is good with your code." \
try:
fluid.require_version('1.6.0')
except Exception as e:
logger.error(err)
sys.exit(1)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册