Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
0deb2e6a
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0deb2e6a
编写于
6月 12, 2017
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add beam search decoder using multiprocesses
上级
bcd01f79
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
93 addition
and
4 deletion
+93
-4
deep_speech_2/decoder.py
deep_speech_2/decoder.py
+53
-1
deep_speech_2/infer.py
deep_speech_2/infer.py
+40
-3
未找到文件。
deep_speech_2/decoder.py
浏览文件 @
0deb2e6a
...
@@ -2,11 +2,12 @@
...
@@ -2,11 +2,12 @@
CTC-like decoder utilitis.
CTC-like decoder utilitis.
"""
"""
import
os
from
itertools
import
groupby
from
itertools
import
groupby
import
numpy
as
np
import
numpy
as
np
import
copy
import
copy
import
kenlm
import
kenlm
import
os
import
multiprocessing
def
ctc_best_path_decode
(
probs_seq
,
vocabulary
):
def
ctc_best_path_decode
(
probs_seq
,
vocabulary
):
...
@@ -187,3 +188,54 @@ def ctc_beam_search_decoder(probs_seq,
...
@@ -187,3 +188,54 @@ def ctc_beam_search_decoder(probs_seq,
## output top beam_size decoding results
## output top beam_size decoding results
beam_result
=
sorted
(
beam_result
,
key
=
lambda
asd
:
asd
[
0
],
reverse
=
True
)
beam_result
=
sorted
(
beam_result
,
key
=
lambda
asd
:
asd
[
0
],
reverse
=
True
)
return
beam_result
return
beam_result
def
ctc_beam_search_decoder_nproc
(
probs_split
,
beam_size
,
vocabulary
,
ext_scoring_func
=
None
,
blank_id
=
0
,
num_processes
=
None
):
'''
Beam search decoder using multiple processes.
:param probs_seq: 3-D list with length num_time_steps, each element
is a 2-D list of probabilities can be used by
ctc_beam_search_decoder.
:type probs_seq: 3-D list
:param beam_size: Width for beam search.
:type beam_size: int
:param vocabulary: Vocabulary list.
:type vocabulary: list
:param ext_scoring_func: External defined scoring function for
partially decoded sentence, e.g. word count
and language model.
:type external_scoring_function: function
:param blank_id: id of blank, default 0.
:type blank_id: int
:param num_processes: Number of processes, default None, equal to the
number of CPUs.
:type num_processes: int
:return: Decoding log probability and result string.
:rtype: list
'''
if
num_processes
is
None
:
num_processes
=
multiprocessing
.
cpu_count
()
if
not
num_processes
>
0
:
raise
ValueError
(
"Number of processes must be positive!"
)
pool
=
multiprocessing
.
Pool
(
processes
=
num_processes
)
results
=
[]
for
i
,
probs_list
in
enumerate
(
probs_split
):
args
=
(
probs_list
,
beam_size
,
vocabulary
,
ext_scoring_func
,
blank_id
)
results
.
append
(
pool
.
apply_async
(
ctc_beam_search_decoder
,
args
))
pool
.
close
()
pool
.
join
()
beam_search_results
=
[]
for
result
in
results
:
beam_search_results
.
append
(
result
.
get
())
return
beam_search_results
deep_speech_2/infer.py
浏览文件 @
0deb2e6a
...
@@ -9,6 +9,7 @@ import gzip
...
@@ -9,6 +9,7 @@ import gzip
from
audio_data_utils
import
DataGenerator
from
audio_data_utils
import
DataGenerator
from
model
import
deep_speech2
from
model
import
deep_speech2
from
decoder
import
*
from
decoder
import
*
from
error_rate
import
wer
parser
=
argparse
.
ArgumentParser
(
parser
=
argparse
.
ArgumentParser
(
description
=
'Simplified version of DeepSpeech2 inference.'
)
description
=
'Simplified version of DeepSpeech2 inference.'
)
...
@@ -59,9 +60,9 @@ parser.add_argument(
...
@@ -59,9 +60,9 @@ parser.add_argument(
help
=
"Vocabulary filepath. (default: %(default)s)"
)
help
=
"Vocabulary filepath. (default: %(default)s)"
)
parser
.
add_argument
(
parser
.
add_argument
(
"--decode_method"
,
"--decode_method"
,
default
=
'beam_search'
,
default
=
'beam_search
_nproc
'
,
type
=
str
,
type
=
str
,
help
=
"Method for ctc decoding, best_path
or beam_search
. (default: %(default)s)"
help
=
"Method for ctc decoding, best_path
, beam_search or beam_search_nproc
. (default: %(default)s)"
)
)
parser
.
add_argument
(
parser
.
add_argument
(
"--beam_size"
,
"--beam_size"
,
...
@@ -151,6 +152,7 @@ def infer():
...
@@ -151,6 +152,7 @@ def infer():
## decode and print
## decode and print
# best path decode
# best path decode
wer_sum
,
wer_counter
=
0
,
0
if
args
.
decode_method
==
"best_path"
:
if
args
.
decode_method
==
"best_path"
:
for
i
,
probs
in
enumerate
(
probs_split
):
for
i
,
probs
in
enumerate
(
probs_split
):
target_transcription
=
''
.
join
(
target_transcription
=
''
.
join
(
...
@@ -159,12 +161,17 @@ def infer():
...
@@ -159,12 +161,17 @@ def infer():
probs_seq
=
probs
,
vocabulary
=
vocab_list
)
probs_seq
=
probs
,
vocabulary
=
vocab_list
)
print
(
"
\n
Target Transcription: %s
\n
Output Transcription: %s"
%
print
(
"
\n
Target Transcription: %s
\n
Output Transcription: %s"
%
(
target_transcription
,
best_path_transcription
))
(
target_transcription
,
best_path_transcription
))
wer_cur
=
wer
(
target_transcription
,
best_path_transcription
)
wer_sum
+=
wer_cur
wer_counter
+=
1
print
(
"cur wer = %f, average wer = %f"
%
(
wer_cur
,
wer_sum
/
wer_counter
))
# beam search decode
# beam search decode
elif
args
.
decode_method
==
"beam_search"
:
elif
args
.
decode_method
==
"beam_search"
:
ext_scorer
=
Scorer
(
args
.
alpha
,
args
.
beta
,
args
.
language_model_path
)
for
i
,
probs
in
enumerate
(
probs_split
):
for
i
,
probs
in
enumerate
(
probs_split
):
target_transcription
=
''
.
join
(
target_transcription
=
''
.
join
(
[
vocab_list
[
index
]
for
index
in
infer_data
[
i
][
1
]])
[
vocab_list
[
index
]
for
index
in
infer_data
[
i
][
1
]])
ext_scorer
=
Scorer
(
args
.
alpha
,
args
.
beta
,
args
.
language_model_path
)
beam_search_result
=
ctc_beam_search_decoder
(
beam_search_result
=
ctc_beam_search_decoder
(
probs_seq
=
probs
,
probs_seq
=
probs
,
vocabulary
=
vocab_list
,
vocabulary
=
vocab_list
,
...
@@ -172,10 +179,40 @@ def infer():
...
@@ -172,10 +179,40 @@ def infer():
ext_scoring_func
=
ext_scorer
.
evaluate
,
ext_scoring_func
=
ext_scorer
.
evaluate
,
blank_id
=
len
(
vocab_list
))
blank_id
=
len
(
vocab_list
))
print
(
"
\n
Target Transcription:
\t
%s"
%
target_transcription
)
print
(
"
\n
Target Transcription:
\t
%s"
%
target_transcription
)
for
index
in
range
(
args
.
num_results_per_sample
):
result
=
beam_search_result
[
index
]
#output: index, log prob, beam result
print
(
"Beam %d: %f
\t
%s"
%
(
index
,
result
[
0
],
result
[
1
]))
wer_cur
=
wer
(
target_transcription
,
beam_search_result
[
0
][
1
])
wer_sum
+=
wer_cur
wer_counter
+=
1
print
(
"cur wer = %f , average wer = %f"
%
(
wer_cur
,
wer_sum
/
wer_counter
))
# beam search in multiple processes
elif
args
.
decode_method
==
"beam_search_nproc"
:
ext_scorer
=
Scorer
(
args
.
alpha
,
args
.
beta
,
args
.
language_model_path
)
beam_search_nproc_results
=
ctc_beam_search_decoder_nproc
(
probs_split
=
probs_split
,
vocabulary
=
vocab_list
,
beam_size
=
args
.
beam_size
,
#ext_scoring_func=ext_scorer.evaluate,
ext_scoring_func
=
None
,
blank_id
=
len
(
vocab_list
))
for
i
,
beam_search_result
in
enumerate
(
beam_search_nproc_results
):
target_transcription
=
''
.
join
(
[
vocab_list
[
index
]
for
index
in
infer_data
[
i
][
1
]])
print
(
"
\n
Target Transcription:
\t
%s"
%
target_transcription
)
for
index
in
range
(
args
.
num_results_per_sample
):
for
index
in
range
(
args
.
num_results_per_sample
):
result
=
beam_search_result
[
index
]
result
=
beam_search_result
[
index
]
#output: index, log prob, beam result
#output: index, log prob, beam result
print
(
"Beam %d: %f
\t
%s"
%
(
index
,
result
[
0
],
result
[
1
]))
print
(
"Beam %d: %f
\t
%s"
%
(
index
,
result
[
0
],
result
[
1
]))
wer_cur
=
wer
(
target_transcription
,
beam_search_result
[
0
][
1
])
wer_sum
+=
wer_cur
wer_counter
+=
1
print
(
"cur wer = %f , average wer = %f"
%
(
wer_cur
,
wer_sum
/
wer_counter
))
else
:
else
:
raise
ValueError
(
"Decoding method [%s] is not supported."
%
method
)
raise
ValueError
(
"Decoding method [%s] is not supported."
%
method
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录