Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
0c847657
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
0c847657
编写于
8月 07, 2018
作者:
G
guochaorong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
set ce flag for language_model
上级
3812d044
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
57 addition
and
25 deletion
+57
-25
fluid/language_model/.run_ce.sh
fluid/language_model/.run_ce.sh
+1
-1
fluid/language_model/train.py
fluid/language_model/train.py
+39
-19
fluid/language_model/utils.py
fluid/language_model/utils.py
+17
-5
未找到文件。
fluid/language_model/.run_ce.sh
浏览文件 @
0c847657
...
@@ -8,7 +8,7 @@ export CUDA_VISIBLE_DEVICES=$cudaid
...
@@ -8,7 +8,7 @@ export CUDA_VISIBLE_DEVICES=$cudaid
FLAGS_benchmark
=
true
python train.py | python _ce.py
FLAGS_benchmark
=
true
python train.py | python _ce.py
cudaid
=
${
language_model_m
:
=0,1,2,3
}
# use 0
-th
card as default
cudaid
=
${
language_model_m
:
=0,1,2,3
}
# use 0
,1,2,3
card as default
export
CUDA_VISIBLE_DEVICES
=
$cudaid
export
CUDA_VISIBLE_DEVICES
=
$cudaid
FLAGS_benchmark
=
true
python train.py | python _ce.py
FLAGS_benchmark
=
true
python train.py | python _ce.py
fluid/language_model/train.py
浏览文件 @
0c847657
...
@@ -4,14 +4,25 @@ import time
...
@@ -4,14 +4,25 @@ import time
import
numpy
as
np
import
numpy
as
np
import
math
import
math
import
argparse
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
paddle
import
paddle
import
utils
import
utils
# random seed must set before configuring the network.
SEED
=
102
fluid
.
default_startup_program
().
random_seed
=
102
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
"language_model benchmark."
)
parser
.
add_argument
(
'--enable_ce'
,
action
=
'store_true'
,
help
=
'If set, run
\
the task with continuous evaluation logs.'
)
args
=
parser
.
parse_args
()
return
args
def
network
(
src
,
dst
,
vocab_size
,
hid_size
,
init_low_bound
,
init_high_bound
):
def
network
(
src
,
dst
,
vocab_size
,
hid_size
,
init_low_bound
,
init_high_bound
):
""" network definition """
""" network definition """
...
@@ -66,6 +77,11 @@ def train(train_reader,
...
@@ -66,6 +77,11 @@ def train(train_reader,
init_low_bound
=-
0.04
,
init_low_bound
=-
0.04
,
init_high_bound
=
0.04
):
init_high_bound
=
0.04
):
""" train network """
""" train network """
args
=
parse_args
()
if
args
.
enable_ce
:
# random seed must set before configuring the network.
fluid
.
default_startup_program
().
random_seed
=
SEED
vocab_size
=
len
(
vocab
)
vocab_size
=
len
(
vocab
)
#Input data
#Input data
...
@@ -77,7 +93,7 @@ def train(train_reader,
...
@@ -77,7 +93,7 @@ def train(train_reader,
# Train program
# Train program
avg_cost
=
None
avg_cost
=
None
cost
=
network
(
src_wordseq
,
dst_wordseq
,
vocab_size
,
hid_size
,
cost
=
network
(
src_wordseq
,
dst_wordseq
,
vocab_size
,
hid_size
,
init_low_bound
,
init_high_bound
)
init_low_bound
,
init_high_bound
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
# Optimization to minimize lost
# Optimization to minimize lost
...
@@ -97,7 +113,7 @@ def train(train_reader,
...
@@ -97,7 +113,7 @@ def train(train_reader,
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
loss_name
=
avg_cost
.
name
)
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
loss_name
=
avg_cost
.
name
)
total_time
=
0.0
total_time
=
0.0
fetch_list
=
[
avg_cost
.
name
]
fetch_list
=
[
avg_cost
.
name
]
for
pass_idx
in
xrange
(
pass_num
):
for
pass_idx
in
xrange
(
pass_num
):
epoch_idx
=
pass_idx
+
1
epoch_idx
=
pass_idx
+
1
print
"epoch_%d start"
%
epoch_idx
print
"epoch_%d start"
%
epoch_idx
...
@@ -111,12 +127,11 @@ def train(train_reader,
...
@@ -111,12 +127,11 @@ def train(train_reader,
map
(
lambda
x
:
x
[
0
],
data
),
place
)
map
(
lambda
x
:
x
[
0
],
data
),
place
)
lod_dst_wordseq
=
utils
.
to_lodtensor
(
lod_dst_wordseq
=
utils
.
to_lodtensor
(
map
(
lambda
x
:
x
[
1
],
data
),
place
)
map
(
lambda
x
:
x
[
1
],
data
),
place
)
ret_avg_cost
=
train_exe
.
run
(
ret_avg_cost
=
train_exe
.
run
(
feed
=
{
feed
=
{
"src_wordseq"
:
lod_src_wordseq
,
"src_wordseq"
:
lod_src_wordseq
,
"dst_wordseq"
:
lod_dst_wordseq
"dst_wordseq"
:
lod_dst_wordseq
},
},
fetch_list
=
fetch_list
)
fetch_list
=
fetch_list
)
avg_ppl
=
np
.
exp
(
ret_avg_cost
[
0
])
avg_ppl
=
np
.
exp
(
ret_avg_cost
[
0
])
newest_ppl
=
np
.
mean
(
avg_ppl
)
newest_ppl
=
np
.
mean
(
avg_ppl
)
if
i
%
100
==
0
:
if
i
%
100
==
0
:
...
@@ -124,39 +139,44 @@ def train(train_reader,
...
@@ -124,39 +139,44 @@ def train(train_reader,
t1
=
time
.
time
()
t1
=
time
.
time
()
total_time
+=
t1
-
t0
total_time
+=
t1
-
t0
print
"epoch:%d num_steps:%d time_cost(s):%f"
%
(
print
"epoch:%d num_steps:%d time_cost(s):%f"
%
(
epoch_idx
,
i
,
epoch_idx
,
i
,
total_time
/
epoch_idx
)
total_time
/
epoch_idx
)
if
pass_idx
==
pass_num
-
1
:
if
pass_idx
==
pass_num
-
1
and
args
.
enable_ce
:
#Note: The following logs are special for CE monitoring.
#Note: The following logs are special for CE monitoring.
#Other situations do not need to care about these logs.
#Other situations do not need to care about these logs.
gpu_num
=
get_cards
()
gpu_num
=
get_cards
()
if
gpu_num
==
1
:
if
gpu_num
==
1
:
print
(
"kpis imikolov_20_pass_duration %s"
%
(
total_time
/
epoch_idx
))
print
(
"kpis imikolov_20_pass_duration %s"
%
(
total_time
/
epoch_idx
))
print
(
"kpis imikolov_20_avg_ppl %s"
%
newest_ppl
)
print
(
"kpis imikolov_20_avg_ppl %s"
%
newest_ppl
)
else
:
else
:
print
(
"kpis imikolov_20_pass_duration_card%s %s"
%
\
print
(
"kpis imikolov_20_pass_duration_card%s %s"
%
\
(
gpu_num
,
total_time
/
epoch_idx
))
(
gpu_num
,
total_time
/
epoch_idx
))
print
(
"kpis imikolov_20_avg_ppl_card%s %s"
%
(
gpu_num
,
newest_ppl
))
print
(
"kpis imikolov_20_avg_ppl_card%s %s"
%
(
gpu_num
,
newest_ppl
))
save_dir
=
"%s/epoch_%d"
%
(
model_dir
,
epoch_idx
)
save_dir
=
"%s/epoch_%d"
%
(
model_dir
,
epoch_idx
)
feed_var_names
=
[
"src_wordseq"
,
"dst_wordseq"
]
feed_var_names
=
[
"src_wordseq"
,
"dst_wordseq"
]
fetch_vars
=
[
avg_cost
]
fetch_vars
=
[
avg_cost
]
fluid
.
io
.
save_inference_model
(
save_dir
,
feed_var_names
,
fetch_vars
,
fluid
.
io
.
save_inference_model
(
save_dir
,
feed_var_names
,
fetch_vars
,
exe
)
exe
)
print
(
"model saved in %s"
%
save_dir
)
print
(
"model saved in %s"
%
save_dir
)
print
(
"finish training"
)
print
(
"finish training"
)
def
get_cards
():
def
get_cards
():
cards
=
os
.
environ
.
get
(
'CUDA_VISIBLE_DEVICES'
)
cards
=
os
.
environ
.
get
(
'CUDA_VISIBLE_DEVICES'
)
num
=
len
(
cards
.
split
(
","
))
num
=
len
(
cards
.
split
(
","
))
return
num
return
num
def
train_net
():
def
train_net
():
""" do training """
""" do training """
batch_size
=
20
batch_size
=
20
args
=
parse_args
()
vocab
,
train_reader
,
test_reader
=
utils
.
prepare_data
(
vocab
,
train_reader
,
test_reader
=
utils
.
prepare_data
(
batch_size
=
batch_size
*
get_cards
(),
buffer_size
=
1000
,
word_freq_threshold
=
0
)
batch_size
=
batch_size
*
get_cards
(),
buffer_size
=
1000
,
\
word_freq_threshold
=
0
,
enable_ce
=
args
.
enable_ce
)
train
(
train
(
train_reader
=
train_reader
,
train_reader
=
train_reader
,
vocab
=
vocab
,
vocab
=
vocab
,
...
...
fluid/language_model/utils.py
浏览文件 @
0c847657
...
@@ -5,6 +5,7 @@ import numpy as np
...
@@ -5,6 +5,7 @@ import numpy as np
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
paddle
import
paddle
def
to_lodtensor
(
data
,
place
):
def
to_lodtensor
(
data
,
place
):
""" convert to LODtensor """
""" convert to LODtensor """
seq_lens
=
[
len
(
seq
)
for
seq
in
data
]
seq_lens
=
[
len
(
seq
)
for
seq
in
data
]
...
@@ -21,17 +22,28 @@ def to_lodtensor(data, place):
...
@@ -21,17 +22,28 @@ def to_lodtensor(data, place):
return
res
return
res
def
prepare_data
(
batch_size
,
buffer_size
=
1000
,
word_freq_threshold
=
0
):
def
prepare_data
(
batch_size
,
buffer_size
=
1000
,
word_freq_threshold
=
0
,
enable_ce
=
False
):
""" prepare the English Pann Treebank (PTB) data """
""" prepare the English Pann Treebank (PTB) data """
vocab
=
paddle
.
dataset
.
imikolov
.
build_dict
(
word_freq_threshold
)
vocab
=
paddle
.
dataset
.
imikolov
.
build_dict
(
word_freq_threshold
)
train_reader
=
paddle
.
batch
(
if
enable_ce
:
paddle
.
reader
.
shuffle
(
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
imikolov
.
train
(
paddle
.
dataset
.
imikolov
.
train
(
vocab
,
vocab
,
buffer_size
,
buffer_size
,
data_type
=
paddle
.
dataset
.
imikolov
.
DataType
.
SEQ
),
data_type
=
paddle
.
dataset
.
imikolov
.
DataType
.
SEQ
),
buf_size
=
buffer_size
),
batch_size
)
batch_size
)
else
:
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
imikolov
.
train
(
vocab
,
buffer_size
,
data_type
=
paddle
.
dataset
.
imikolov
.
DataType
.
SEQ
),
buf_size
=
buffer_size
),
batch_size
)
test_reader
=
paddle
.
batch
(
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
imikolov
.
test
(
paddle
.
dataset
.
imikolov
.
test
(
vocab
,
buffer_size
,
data_type
=
paddle
.
dataset
.
imikolov
.
DataType
.
SEQ
),
vocab
,
buffer_size
,
data_type
=
paddle
.
dataset
.
imikolov
.
DataType
.
SEQ
),
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录