Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
0c5c32d5
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0c5c32d5
编写于
3月 29, 2018
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of upstream into decoder_init
上级
a5cd05c6
05f36d8f
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
263 addition
and
305 deletion
+263
-305
fluid/DeepASR/data_utils/async_data_reader.py
fluid/DeepASR/data_utils/async_data_reader.py
+84
-92
fluid/DeepASR/data_utils/util.py
fluid/DeepASR/data_utils/util.py
+1
-133
fluid/DeepASR/decoder/post_decode_faster.cc
fluid/DeepASR/decoder/post_decode_faster.cc
+3
-2
fluid/DeepASR/decoder/post_decode_faster.h
fluid/DeepASR/decoder/post_decode_faster.h
+2
-1
fluid/DeepASR/decoder/pybind.cc
fluid/DeepASR/decoder/pybind.cc
+1
-1
fluid/DeepASR/infer.py
fluid/DeepASR/infer.py
+4
-3
fluid/DeepASR/infer_by_ckpt.py
fluid/DeepASR/infer_by_ckpt.py
+9
-6
fluid/DeepASR/tools/profile.py
fluid/DeepASR/tools/profile.py
+5
-7
fluid/DeepASR/train.py
fluid/DeepASR/train.py
+8
-12
fluid/image_classification/se_resnext.py
fluid/image_classification/se_resnext.py
+146
-48
未找到文件。
fluid/DeepASR/data_utils/async_data_reader.py
浏览文件 @
0c5c32d5
...
...
@@ -15,13 +15,12 @@ from multiprocessing import Manager, Process
import
data_utils.augmentor.trans_mean_variance_norm
as
trans_mean_variance_norm
import
data_utils.augmentor.trans_add_delta
as
trans_add_delta
from
data_utils.util
import
suppress_complaints
,
suppress_signal
from
data_utils.util
import
SharedNDArray
,
SharedMemoryPoolManager
from
data_utils.util
import
DaemonProcessGroup
,
batch_to_ndarray
from
data_utils.util
import
CriticalException
,
ForceExitWrapper
,
EpochEndSignal
from
data_utils.util
import
CriticalException
,
ForceExitWrapper
class
SampleInfo
(
object
):
"""SampleInfo holds the necessary information to load a sample from disk.
Args:
feature_bin_path (str): File containing the feature data.
feature_start (int): Start position of the sample's feature data.
...
...
@@ -54,6 +53,7 @@ class SampleInfoBucket(object):
data, sample start position, sample byte number etc.) to access samples'
feature data and the same with the label description file. SampleInfoBucket
is the minimum unit to do shuffle.
Args:
feature_bin_paths (list|tuple): Files containing the binary feature
data.
...
...
@@ -67,8 +67,8 @@ class SampleInfoBucket(object):
split_sentence_threshold(int): Sentence whose length larger than
the value will trigger split operation.
split_sub_sentence_len(int): sub-sentence length is equal to
(split_sub_sentence_len
+
\
rand() % split_perturb).
(split_sub_sentence_len
+
rand() % split_perturb).
"""
def
__init__
(
self
,
...
...
@@ -160,9 +160,14 @@ class SampleInfoBucket(object):
return
sample_info_list
class
EpochEndSignal
():
pass
class
AsyncDataReader
(
object
):
"""DataReader provides basic audio sample preprocessing pipeline including
data loading and data augmentation.
Args:
feature_file_list (str): File containing paths of feature data file and
corresponding description file.
...
...
@@ -206,17 +211,12 @@ class AsyncDataReader(object):
self
.
generate_bucket_list
(
True
)
self
.
_order_id
=
0
self
.
_manager
=
Manager
()
self
.
_sample_buffer_size
=
sample_buffer_size
self
.
_sample_info_buffer_size
=
sample_info_buffer_size
self
.
_batch_buffer_size
=
batch_buffer_size
self
.
_proc_num
=
proc_num
if
self
.
_proc_num
<=
2
:
raise
ValueError
(
"Value of `proc_num` should be greater than 2."
)
self
.
_sample_proc_num
=
self
.
_proc_num
-
2
self
.
_verbose
=
verbose
self
.
_force_exit
=
ForceExitWrapper
(
self
.
_manager
.
Value
(
'b'
,
False
))
# buffer queue
self
.
_sample_info_queue
=
self
.
_manager
.
Queue
(
sample_info_buffer_size
)
self
.
_sample_queue
=
self
.
_manager
.
Queue
(
sample_buffer_size
)
self
.
_batch_queue
=
self
.
_manager
.
Queue
(
batch_buffer_size
)
def
generate_bucket_list
(
self
,
is_shuffle
):
if
self
.
_block_info_list
is
None
:
...
...
@@ -250,21 +250,13 @@ class AsyncDataReader(object):
def
set_transformers
(
self
,
transformers
):
self
.
_transformers
=
transformers
def
recycle
(
self
,
*
args
):
for
shared_ndarray
in
args
:
if
not
isinstance
(
shared_ndarray
,
SharedNDArray
):
raise
Value
(
"Only support recycle SharedNDArray object."
)
shared_ndarray
.
recycle
(
self
.
_pool_manager
.
pool
)
def
_start_async_processing
(
self
):
def
_sample_generator
(
self
):
sample_info_queue
=
self
.
_manager
.
Queue
(
self
.
_sample_info_buffer_size
)
sample_queue
=
self
.
_manager
.
Queue
(
self
.
_sample_buffer_size
)
self
.
_order_id
=
0
@
suppress_complaints
(
verbose
=
self
.
_verbose
,
notify
=
self
.
_force_exit
)
def
ordered_feeding_task
(
sample_info_queue
):
if
self
.
_verbose
==
0
:
signal
.
signal
(
signal
.
SIGTERM
,
suppress_signal
)
signal
.
signal
(
signal
.
SIGINT
,
suppress_signal
)
for
sample_info_bucket
in
self
.
_bucket_list
:
try
:
sample_info_list
=
\
...
...
@@ -277,14 +269,13 @@ class AsyncDataReader(object):
sample_info_queue
.
put
((
sample_info
,
self
.
_order_id
))
self
.
_order_id
+=
1
for
i
in
xrange
(
self
.
_
sample_
proc_num
):
for
i
in
xrange
(
self
.
_proc_num
):
sample_info_queue
.
put
(
EpochEndSignal
())
feeding_proc
=
DaemonProcessGroup
(
proc_num
=
1
,
target
=
ordered_feeding_task
,
args
=
(
self
.
_sample_info_queue
,
))
feeding_proc
.
start_all
()
feeding_thread
=
Thread
(
target
=
ordered_feeding_task
,
args
=
(
sample_info_queue
,
))
feeding_thread
.
daemon
=
True
feeding_thread
.
start
()
@
suppress_complaints
(
verbose
=
self
.
_verbose
,
notify
=
self
.
_force_exit
)
def
ordered_processing_task
(
sample_info_queue
,
sample_queue
,
out_order
):
...
...
@@ -312,11 +303,12 @@ class AsyncDataReader(object):
sample_info
.
feature_size
)
assert
sample_info
.
feature_frame_num
\
*
sample_info
.
feature_dim
*
4
==
len
(
feature_bytes
),
\
(
sample_info
.
feature_bin_path
,
sample_info
.
feature_frame_num
,
sample_info
.
feature_dim
,
len
(
feature_bytes
))
*
sample_info
.
feature_dim
*
4
\
==
len
(
feature_bytes
),
\
(
sample_info
.
feature_bin_path
,
sample_info
.
feature_frame_num
,
sample_info
.
feature_dim
,
len
(
feature_bytes
))
label_bytes
=
read_bytes
(
sample_info
.
label_bin_path
,
sample_info
.
label_start
,
...
...
@@ -360,83 +352,83 @@ class AsyncDataReader(object):
sample_queue
.
put
(
EpochEndSignal
())
out_order
=
self
.
_manager
.
list
([
0
])
args
=
(
s
elf
.
_sample_info_queue
,
self
.
_
sample_queue
,
out_order
)
sample_proc
=
DaemonProcessGroup
(
proc_num
=
self
.
_sample_proc_num
,
target
=
ordered_processing_task
,
args
=
args
)
sample_proc
.
start_all
()
args
=
(
s
ample_info_queue
,
sample_queue
,
out_order
)
workers
=
[
Process
(
target
=
ordered_processing_task
,
args
=
args
)
for
_
in
xrange
(
self
.
_proc_num
)
]
def
batch_iterator
(
self
,
batch_size
,
minimum_batch_size
):
@
suppress_complaints
(
verbose
=
self
.
_verbose
,
notify
=
self
.
_force_exit
)
def
batch_assembling_task
(
sample_queue
,
batch_queue
,
pool
):
def
conv_to_shared
(
ndarray
):
while
self
.
_force_exit
==
False
:
try
:
(
name
,
shared_ndarray
)
=
pool
.
popitem
()
except
Exception
as
e
:
time
.
sleep
(
0.001
)
else
:
shared_ndarray
.
copy
(
ndarray
)
return
shared_ndarray
for
w
in
workers
:
w
.
daemon
=
True
w
.
start
()
if
self
.
_verbose
==
0
:
signal
.
signal
(
signal
.
SIGTERM
,
suppress_signal
)
signal
.
signal
(
signal
.
SIGINT
,
suppress_signal
)
finished_proc_num
=
0
batch_samples
=
[]
lod
=
[
0
]
done_num
=
0
while
done_num
<
self
.
_sample_proc_num
:
sample
=
sample_queue
.
get
()
while
self
.
_force_exit
==
False
:
try
:
sample
=
sample_queue
.
get_nowait
()
except
Queue
.
Empty
:
time
.
sleep
(
0.001
)
else
:
if
isinstance
(
sample
,
EpochEndSignal
):
done_num
+=
1
else
:
batch_samples
.
append
(
sample
)
lod
.
append
(
lod
[
-
1
]
+
sample
[
0
].
shape
[
0
])
if
len
(
batch_samples
)
==
batch_size
:
feature
,
label
=
batch_to_ndarray
(
batch_samples
,
lod
)
feature
=
conv_to_shared
(
feature
)
label
=
conv_to_shared
(
label
)
lod
=
conv_to_shared
(
np
.
array
(
lod
).
astype
(
'int64'
))
finished_proc_num
+=
1
if
finished_proc_num
>=
self
.
_proc_num
:
break
else
:
continue
batch_queue
.
put
((
feature
,
label
,
lod
))
batch_samples
=
[]
lod
=
[
0
]
yield
sample
if
len
(
batch_samples
)
>=
minimum_batch_size
:
(
feature
,
label
)
=
batch_to_ndarray
(
batch_samples
,
lod
)
def
batch_iterator
(
self
,
batch_size
,
minimum_batch_size
):
def
batch_to_ndarray
(
batch_samples
,
lod
):
assert
len
(
batch_samples
)
frame_dim
=
batch_samples
[
0
][
0
].
shape
[
1
]
batch_feature
=
np
.
zeros
((
lod
[
-
1
],
frame_dim
),
dtype
=
"float32"
)
batch_label
=
np
.
zeros
((
lod
[
-
1
],
1
),
dtype
=
"int64"
)
start
=
0
for
sample
in
batch_samples
:
frame_num
=
sample
[
0
].
shape
[
0
]
batch_feature
[
start
:
start
+
frame_num
,
:]
=
sample
[
0
]
batch_label
[
start
:
start
+
frame_num
,
:]
=
sample
[
1
]
start
+=
frame_num
return
(
batch_feature
,
batch_label
)
feature
=
conv_to_shared
(
feature
)
label
=
conv_to_shared
(
label
)
lod
=
conv_to_shared
(
np
.
array
(
lod
).
astype
(
'int64'
))
@
suppress_complaints
(
verbose
=
self
.
_verbose
,
notify
=
self
.
_force_exit
)
def
batch_assembling_task
(
sample_generator
,
batch_queue
):
batch_samples
=
[]
lod
=
[
0
]
for
sample
in
sample_generator
():
batch_samples
.
append
(
sample
)
lod
.
append
(
lod
[
-
1
]
+
sample
[
0
].
shape
[
0
])
if
len
(
batch_samples
)
==
batch_size
:
(
batch_feature
,
batch_label
)
=
batch_to_ndarray
(
batch_samples
,
lod
)
batch_queue
.
put
((
batch_feature
,
batch_label
,
lod
))
batch_samples
=
[]
lod
=
[
0
]
batch_queue
.
put
((
feature
,
label
,
lod
))
if
len
(
batch_samples
)
>=
minimum_batch_size
:
(
batch_feature
,
batch_label
)
=
batch_to_ndarray
(
batch_samples
,
lod
)
batch_queue
.
put
((
batch_feature
,
batch_label
,
lod
))
batch_queue
.
put
(
EpochEndSignal
())
self
.
_start_async_processing
(
)
batch_queue
=
Queue
.
Queue
(
self
.
_batch_buffer_size
)
self
.
_pool_manager
=
SharedMemoryPoolManager
(
self
.
_batch_buffer_size
*
3
,
self
.
_manager
)
assembling_proc
=
DaemonProcessGroup
(
proc_num
=
1
,
assembling_thread
=
Thread
(
target
=
batch_assembling_task
,
args
=
(
self
.
_sample_
queue
,
self
.
_batch_queue
,
self
.
_pool_manager
.
pool
))
assembling_
proc
.
start_all
()
args
=
(
self
.
_sample_
generator
,
batch_queue
))
assembling_thread
.
daemon
=
True
assembling_
thread
.
start
()
while
self
.
_force_exit
==
False
:
try
:
batch_data
=
self
.
_
batch_queue
.
get_nowait
()
batch_data
=
batch_queue
.
get_nowait
()
except
Queue
.
Empty
:
time
.
sleep
(
0.001
)
else
:
if
isinstance
(
batch_data
,
EpochEndSignal
):
break
yield
batch_data
# clean the shared memory
del
self
.
_pool_manager
fluid/DeepASR/data_utils/util.py
浏览文件 @
0c5c32d5
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
sys
,
time
import
sys
from
six
import
reraise
from
tblib
import
Traceback
from
multiprocessing
import
Manager
,
Process
import
posix_ipc
,
mmap
import
numpy
as
np
...
...
@@ -37,19 +35,6 @@ def lodtensor_to_ndarray(lod_tensor):
return
ret
,
lod_tensor
.
lod
()
def
batch_to_ndarray
(
batch_samples
,
lod
):
frame_dim
=
batch_samples
[
0
][
0
].
shape
[
1
]
batch_feature
=
np
.
zeros
((
lod
[
-
1
],
frame_dim
),
dtype
=
"float32"
)
batch_label
=
np
.
zeros
((
lod
[
-
1
],
1
),
dtype
=
"int64"
)
start
=
0
for
sample
in
batch_samples
:
frame_num
=
sample
[
0
].
shape
[
0
]
batch_feature
[
start
:
start
+
frame_num
,
:]
=
sample
[
0
]
batch_label
[
start
:
start
+
frame_num
,
:]
=
sample
[
1
]
start
+=
frame_num
return
(
batch_feature
,
batch_label
)
def
split_infer_result
(
infer_seq
,
lod
):
infer_batch
=
[]
for
i
in
xrange
(
0
,
len
(
lod
[
0
])
-
1
):
...
...
@@ -57,127 +42,10 @@ def split_infer_result(infer_seq, lod):
return
infer_batch
class
DaemonProcessGroup
(
object
):
def
__init__
(
self
,
proc_num
,
target
,
args
):
self
.
_proc_num
=
proc_num
self
.
_workers
=
[
Process
(
target
=
target
,
args
=
args
)
for
_
in
xrange
(
self
.
_proc_num
)
]
def
start_all
(
self
):
for
w
in
self
.
_workers
:
w
.
daemon
=
True
w
.
start
()
@
property
def
proc_num
(
self
):
return
self
.
_proc_num
class
EpochEndSignal
(
object
):
pass
class
CriticalException
(
Exception
):
pass
class
SharedNDArray
(
object
):
"""SharedNDArray utilizes shared memory to avoid data serialization when
data object shared among different processes. We can reconstruct the
`ndarray` when memory address, shape and dtype provided.
Args:
name (str): Address name of shared memory.
whether_verify (bool): Whether to validate the writing operation.
"""
def
__init__
(
self
,
name
,
whether_verify
=
False
):
self
.
_name
=
name
self
.
_shm
=
None
self
.
_buf
=
None
self
.
_array
=
np
.
zeros
(
1
,
dtype
=
np
.
float32
)
self
.
_inited
=
False
self
.
_whether_verify
=
whether_verify
def
zeros_like
(
self
,
shape
,
dtype
):
size
=
int
(
np
.
prod
(
shape
))
*
np
.
dtype
(
dtype
).
itemsize
if
self
.
_inited
:
self
.
_shm
=
posix_ipc
.
SharedMemory
(
self
.
_name
)
else
:
self
.
_shm
=
posix_ipc
.
SharedMemory
(
self
.
_name
,
posix_ipc
.
O_CREAT
,
size
=
size
)
self
.
_buf
=
mmap
.
mmap
(
self
.
_shm
.
fd
,
size
)
self
.
_array
=
np
.
ndarray
(
shape
,
dtype
,
self
.
_buf
,
order
=
'C'
)
def
copy
(
self
,
ndarray
):
size
=
int
(
np
.
prod
(
ndarray
.
shape
))
*
np
.
dtype
(
ndarray
.
dtype
).
itemsize
self
.
zeros_like
(
ndarray
.
shape
,
ndarray
.
dtype
)
self
.
_array
[:]
=
ndarray
self
.
_buf
.
flush
()
self
.
_inited
=
True
if
self
.
_whether_verify
:
shm
=
posix_ipc
.
SharedMemory
(
self
.
_name
)
buf
=
mmap
.
mmap
(
shm
.
fd
,
size
)
array
=
np
.
ndarray
(
ndarray
.
shape
,
ndarray
.
dtype
,
buf
,
order
=
'C'
)
np
.
testing
.
assert_array_equal
(
array
,
ndarray
)
@
property
def
ndarray
(
self
):
return
self
.
_array
def
recycle
(
self
,
pool
):
self
.
_buf
.
close
()
self
.
_shm
.
close_fd
()
self
.
_inited
=
False
pool
[
self
.
_name
]
=
self
def
__getstate__
(
self
):
return
(
self
.
_name
,
self
.
_array
.
shape
,
self
.
_array
.
dtype
,
self
.
_inited
,
self
.
_whether_verify
)
def
__setstate__
(
self
,
state
):
self
.
_name
=
state
[
0
]
self
.
_inited
=
state
[
3
]
self
.
zeros_like
(
state
[
1
],
state
[
2
])
self
.
_whether_verify
=
state
[
4
]
class
SharedMemoryPoolManager
(
object
):
"""SharedMemoryPoolManager maintains a multiprocessing.Manager.dict object.
All available addresses are allocated once and will be reused. Though this
class is not process-safe, the pool can be shared between processes. All
shared memory should be unlinked before the main process exited.
Args:
pool_size (int): Size of shared memory pool.
manager (dict): A multiprocessing.Manager object, the pool is
maintained by the proxy process.
name_prefix (str): Address prefix of shared memory.
"""
def
__init__
(
self
,
pool_size
,
manager
,
name_prefix
=
'/deep_asr'
):
self
.
_names
=
[]
self
.
_dict
=
manager
.
dict
()
self
.
_time_prefix
=
time
.
strftime
(
'%Y%m%d%H%M%S'
)
for
i
in
xrange
(
pool_size
):
name
=
name_prefix
+
'_'
+
self
.
_time_prefix
+
'_'
+
str
(
i
)
self
.
_dict
[
name
]
=
SharedNDArray
(
name
)
self
.
_names
.
append
(
name
)
@
property
def
pool
(
self
):
return
self
.
_dict
def
__del__
(
self
):
for
name
in
self
.
_names
:
# have to unlink the shared memory
posix_ipc
.
unlink_shared_memory
(
name
)
def
suppress_signal
(
signo
,
stack_frame
):
pass
...
...
fluid/DeepASR/decoder/post_decode_faster.cc
浏览文件 @
0c5c32d5
...
...
@@ -21,14 +21,15 @@ using fst::StdArc;
Decoder
::
Decoder
(
std
::
string
word_syms_filename
,
std
::
string
fst_in_filename
,
std
::
string
logprior_rxfilename
)
{
std
::
string
logprior_rxfilename
,
kaldi
::
BaseFloat
acoustic_scale
)
{
const
char
*
usage
=
"Decode, reading log-likelihoods (of transition-ids or whatever symbol "
"is on the graph) as matrices."
;
kaldi
::
ParseOptions
po
(
usage
);
binary
=
true
;
acoustic_scale
=
1.5
;
this
->
acoustic_scale
=
acoustic_scale
;
allow_partial
=
true
;
kaldi
::
FasterDecoderOptions
decoder_opts
;
decoder_opts
.
Register
(
&
po
,
true
);
// true == include obscure settings.
...
...
fluid/DeepASR/decoder/post_decode_faster.h
浏览文件 @
0c5c32d5
...
...
@@ -29,7 +29,8 @@ class Decoder {
public:
Decoder
(
std
::
string
word_syms_filename
,
std
::
string
fst_in_filename
,
std
::
string
logprior_rxfilename
);
std
::
string
logprior_rxfilename
,
kaldi
::
BaseFloat
acoustic_scale
);
~
Decoder
();
// Interface to accept the scores read from specifier and return
...
...
fluid/DeepASR/decoder/pybind.cc
浏览文件 @
0c5c32d5
...
...
@@ -23,7 +23,7 @@ PYBIND11_MODULE(post_decode_faster, m) {
m
.
doc
()
=
"Decoder for Deep ASR model"
;
py
::
class_
<
Decoder
>
(
m
,
"Decoder"
)
.
def
(
py
::
init
<
std
::
string
,
std
::
string
,
std
::
string
>
())
.
def
(
py
::
init
<
std
::
string
,
std
::
string
,
std
::
string
,
kaldi
::
BaseFloat
>
())
.
def
(
"decode"
,
(
std
::
vector
<
std
::
string
>
(
Decoder
::*
)(
std
::
string
))
&
Decoder
::
decode
,
...
...
fluid/DeepASR/infer.py
浏览文件 @
0c5c32d5
...
...
@@ -8,7 +8,7 @@ import paddle.fluid as fluid
import
data_utils.augmentor.trans_mean_variance_norm
as
trans_mean_variance_norm
import
data_utils.augmentor.trans_add_delta
as
trans_add_delta
import
data_utils.augmentor.trans_splice
as
trans_splice
import
data_utils.data_reader
as
reader
import
data_utils.
async_
data_reader
as
reader
from
data_utils.util
import
lodtensor_to_ndarray
from
data_utils.util
import
split_infer_result
...
...
@@ -79,12 +79,13 @@ def infer(args):
trans_splice
.
TransSplice
()
]
infer_data_reader
=
reader
.
DataReader
(
args
.
infer_feature_lst
,
args
.
infer_label_lst
)
infer_data_reader
=
reader
.
Async
DataReader
(
args
.
infer_feature_lst
,
args
.
infer_label_lst
)
infer_data_reader
.
set_transformers
(
ltrans
)
feature_t
=
fluid
.
LoDTensor
()
one_batch
=
infer_data_reader
.
batch_iterator
(
args
.
batch_size
,
1
).
next
()
(
features
,
labels
,
lod
)
=
one_batch
feature_t
.
set
(
features
,
place
)
feature_t
.
set_lod
([
lod
])
...
...
fluid/DeepASR/infer_by_ckpt.py
浏览文件 @
0c5c32d5
...
...
@@ -106,6 +106,11 @@ def parse_args():
type
=
str
,
default
=
"./decoder/logprior"
,
help
=
"The log prior probs for training data. (default: %(default)s)"
)
parser
.
add_argument
(
'--acoustic_scale'
,
type
=
float
,
default
=
0.2
,
help
=
"Scaling factor for acoustic likelihoods. (default: %(default)f)"
)
args
=
parser
.
parse_args
()
return
args
...
...
@@ -165,12 +170,10 @@ def infer_from_ckpt(args):
args
.
minimum_batch_size
)):
# load_data
(
features
,
labels
,
lod
)
=
batch_data
feature_t
.
set
(
features
.
ndarray
,
place
)
feature_t
.
set_lod
([
lod
.
ndarray
])
label_t
.
set
(
labels
.
ndarray
,
place
)
label_t
.
set_lod
([
lod
.
ndarray
])
infer_data_reader
.
recycle
(
features
,
labels
,
lod
)
feature_t
.
set
(
features
,
place
)
feature_t
.
set_lod
([
lod
])
label_t
.
set
(
labels
,
place
)
label_t
.
set_lod
([
lod
])
results
=
exe
.
run
(
infer_program
,
feed
=
{
"feature"
:
feature_t
,
...
...
fluid/DeepASR/tools/profile.py
浏览文件 @
0c5c32d5
...
...
@@ -169,14 +169,12 @@ def profile(args):
frames_seen
=
0
# load_data
(
features
,
labels
,
lod
)
=
batch_data
feature_t
.
set
(
features
.
ndarray
,
place
)
feature_t
.
set_lod
([
lod
.
ndarray
])
label_t
.
set
(
labels
.
ndarray
,
place
)
label_t
.
set_lod
([
lod
.
ndarray
])
feature_t
.
set
(
features
,
place
)
feature_t
.
set_lod
([
lod
])
label_t
.
set
(
labels
,
place
)
label_t
.
set_lod
([
lod
])
frames_seen
+=
lod
.
ndarray
[
-
1
]
data_reader
.
recycle
(
features
,
labels
,
lod
)
frames_seen
+=
lod
[
-
1
]
outs
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"feature"
:
feature_t
,
...
...
fluid/DeepASR/train.py
浏览文件 @
0c5c32d5
...
...
@@ -193,12 +193,10 @@ def train(args):
args
.
minimum_batch_size
)):
# load_data
(
features
,
labels
,
lod
)
=
batch_data
feature_t
.
set
(
features
.
ndarray
,
place
)
feature_t
.
set_lod
([
lod
.
ndarray
])
label_t
.
set
(
labels
.
ndarray
,
place
)
label_t
.
set_lod
([
lod
.
ndarray
])
test_data_reader
.
recycle
(
features
,
labels
,
lod
)
feature_t
.
set
(
features
,
place
)
feature_t
.
set_lod
([
lod
])
label_t
.
set
(
labels
,
place
)
label_t
.
set_lod
([
lod
])
cost
,
acc
=
exe
.
run
(
test_program
,
feed
=
{
"feature"
:
feature_t
,
...
...
@@ -221,12 +219,10 @@ def train(args):
args
.
minimum_batch_size
)):
# load_data
(
features
,
labels
,
lod
)
=
batch_data
feature_t
.
set
(
features
.
ndarray
,
place
)
feature_t
.
set_lod
([
lod
.
ndarray
])
label_t
.
set
(
labels
.
ndarray
,
place
)
label_t
.
set_lod
([
lod
.
ndarray
])
train_data_reader
.
recycle
(
features
,
labels
,
lod
)
feature_t
.
set
(
features
,
place
)
feature_t
.
set_lod
([
lod
])
label_t
.
set
(
labels
,
place
)
label_t
.
set_lod
([
lod
])
to_print
=
batch_id
>
0
and
(
batch_id
%
args
.
print_per_batches
==
0
)
outs
=
exe
.
run
(
fluid
.
default_main_program
(),
...
...
fluid/image_classification/se_resnext.py
浏览文件 @
0c5c32d5
import
os
import
numpy
as
np
import
time
import
sys
import
paddle.v2
as
paddle
import
paddle.fluid
as
fluid
import
reader
...
...
@@ -65,20 +68,44 @@ def bottleneck_block(input, num_filters, stride, cardinality, reduction_ratio):
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
scale
,
act
=
'relu'
)
def
SE_ResNeXt
(
input
,
class_dim
,
infer
=
False
):
cardinality
=
64
reduction_ratio
=
16
depth
=
[
3
,
8
,
36
,
3
]
num_filters
=
[
128
,
256
,
512
,
1024
]
def
SE_ResNeXt
(
input
,
class_dim
,
infer
=
False
,
layers
=
50
):
supported_layers
=
[
50
,
152
]
if
layers
not
in
supported_layers
:
print
(
"supported layers are"
,
supported_layers
,
"but input layer is"
,
layers
)
exit
()
if
layers
==
50
:
cardinality
=
32
reduction_ratio
=
16
depth
=
[
3
,
4
,
6
,
3
]
num_filters
=
[
128
,
256
,
512
,
1024
]
conv
=
conv_bn_layer
(
input
=
input
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
2
,
act
=
'relu'
)
conv
=
conv_bn_layer
(
input
=
conv
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
)
conv
=
conv_bn_layer
(
input
=
conv
,
num_filters
=
128
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
conv
=
conv_bn_layer
(
input
=
input
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
elif
layers
==
152
:
cardinality
=
64
reduction_ratio
=
16
depth
=
[
3
,
8
,
36
,
3
]
num_filters
=
[
128
,
256
,
512
,
1024
]
conv
=
conv_bn_layer
(
input
=
input
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
2
,
act
=
'relu'
)
conv
=
conv_bn_layer
(
input
=
conv
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
)
conv
=
conv_bn_layer
(
input
=
conv
,
num_filters
=
128
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
for
block
in
range
(
len
(
depth
)):
for
i
in
range
(
depth
[
block
]):
...
...
@@ -104,7 +131,10 @@ def train(learning_rate,
num_passes
,
init_model
=
None
,
model_save_dir
=
'model'
,
parallel
=
True
):
parallel
=
True
,
use_nccl
=
True
,
lr_strategy
=
None
,
layers
=
50
):
class_dim
=
1000
image_shape
=
[
3
,
224
,
224
]
...
...
@@ -113,36 +143,52 @@ def train(learning_rate,
if
parallel
:
places
=
fluid
.
layers
.
get_places
()
pd
=
fluid
.
layers
.
ParallelDo
(
places
)
pd
=
fluid
.
layers
.
ParallelDo
(
places
,
use_nccl
=
use_nccl
)
with
pd
.
do
():
image_
=
pd
.
read_input
(
image
)
label_
=
pd
.
read_input
(
label
)
out
=
SE_ResNeXt
(
input
=
image_
,
class_dim
=
class_dim
)
out
=
SE_ResNeXt
(
input
=
image_
,
class_dim
=
class_dim
,
layers
=
layers
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
out
,
label
=
label_
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
accuracy
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label_
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label_
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label_
,
k
=
5
)
pd
.
write_output
(
avg_cost
)
pd
.
write_output
(
accuracy
)
pd
.
write_output
(
acc_top1
)
pd
.
write_output
(
acc_top5
)
avg_cost
,
acc
uracy
=
pd
()
avg_cost
,
acc
_top1
,
acc_top5
=
pd
()
avg_cost
=
fluid
.
layers
.
mean
(
x
=
avg_cost
)
accuracy
=
fluid
.
layers
.
mean
(
x
=
accuracy
)
acc_top1
=
fluid
.
layers
.
mean
(
x
=
acc_top1
)
acc_top5
=
fluid
.
layers
.
mean
(
x
=
acc_top5
)
else
:
out
=
SE_ResNeXt
(
input
=
image
,
class_dim
=
class_dim
)
out
=
SE_ResNeXt
(
input
=
image
,
class_dim
=
class_dim
,
layers
=
layers
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
accuracy
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
if
lr_strategy
is
None
:
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
else
:
bd
=
lr_strategy
[
"bd"
]
lr
=
lr_strategy
[
"lr"
]
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr
),
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
opts
=
optimizer
.
minimize
(
avg_cost
)
fluid
.
memory_optimize
(
fluid
.
default_main_program
())
inference_program
=
fluid
.
default_main_program
().
clone
()
with
fluid
.
program_guard
(
inference_program
):
inference_program
=
fluid
.
io
.
get_inference_program
([
avg_cost
,
accuracy
])
inference_program
=
fluid
.
io
.
get_inference_program
(
[
avg_cost
,
acc_top1
,
acc_top5
])
place
=
fluid
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -156,34 +202,86 @@ def train(learning_rate,
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
image
,
label
])
for
pass_id
in
range
(
num_passes
):
train_info
=
[[],
[],
[]]
test_info
=
[[],
[],
[]]
for
batch_id
,
data
in
enumerate
(
train_reader
()):
loss
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
])
print
(
"Pass {0}, batch {1}, loss {2}"
.
format
(
pass_id
,
batch_id
,
float
(
loss
[
0
])))
total_loss
=
0.0
total_acc
=
0.0
total_batch
=
0
t1
=
time
.
time
()
loss
,
acc1
,
acc5
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
,
acc_top1
,
acc_top5
])
t2
=
time
.
time
()
period
=
t2
-
t1
train_info
[
0
].
append
(
loss
[
0
])
train_info
[
1
].
append
(
acc1
[
0
])
train_info
[
2
].
append
(
acc5
[
0
])
if
batch_id
%
10
==
0
:
print
(
"Pass {0}, trainbatch {1}, loss {2},
\
acc1 {3}, acc5 {4} time {5}"
.
format
(
pass_id
,
\
batch_id
,
loss
[
0
],
acc1
[
0
],
acc5
[
0
],
\
"%2.2f sec"
%
period
))
sys
.
stdout
.
flush
()
train_loss
=
np
.
array
(
train_info
[
0
]).
mean
()
train_acc1
=
np
.
array
(
train_info
[
1
]).
mean
()
train_acc5
=
np
.
array
(
train_info
[
2
]).
mean
()
for
data
in
test_reader
():
loss
,
acc
=
exe
.
run
(
inference_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
,
accuracy
])
total_loss
+=
float
(
loss
)
total_acc
+=
float
(
acc
)
total_batch
+=
1
print
(
"End pass {0}, test_loss {1}, test_acc {2}"
.
format
(
pass_id
,
total_loss
/
total_batch
,
total_acc
/
total_batch
))
t1
=
time
.
time
()
loss
,
acc1
,
acc5
=
exe
.
run
(
inference_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
,
acc_top1
,
acc_top5
])
t2
=
time
.
time
()
period
=
t2
-
t1
test_info
[
0
].
append
(
loss
[
0
])
test_info
[
1
].
append
(
acc1
[
0
])
test_info
[
2
].
append
(
acc5
[
0
])
if
batch_id
%
10
==
0
:
print
(
"Pass {0},testbatch {1},loss {2},
\
acc1 {3},acc5 {4},time {5}"
.
format
(
pass_id
,
\
batch_id
,
loss
[
0
],
acc1
[
0
],
acc5
[
0
],
\
"%2.2f sec"
%
period
))
sys
.
stdout
.
flush
()
test_loss
=
np
.
array
(
test_info
[
0
]).
mean
()
test_acc1
=
np
.
array
(
test_info
[
1
]).
mean
()
test_acc5
=
np
.
array
(
test_info
[
2
]).
mean
()
print
(
"End pass {0}, train_loss {1}, train_acc1 {2}, train_acc5 {3},
\
test_loss {4}, test_acc1 {5}, test_acc5 {6}"
.
format
(
pass_id
,
\
train_loss
,
train_acc1
,
train_acc5
,
test_loss
,
test_acc1
,
\
test_acc5
))
sys
.
stdout
.
flush
()
model_path
=
os
.
path
.
join
(
model_save_dir
,
str
(
pass_id
))
fluid
.
io
.
save_inference_model
(
model_path
,
[
'image'
],
[
out
],
exe
)
if
not
os
.
path
.
isdir
(
model_path
):
os
.
makedirs
(
model_path
)
fluid
.
io
.
save_persistables
(
exe
,
model_path
)
if
__name__
==
'__main__'
:
epoch_points
=
[
30
,
60
,
90
]
total_images
=
1281167
batch_size
=
256
step
=
int
(
total_images
/
batch_size
+
1
)
bd
=
[
e
*
step
for
e
in
epoch_points
]
lr
=
[
0.1
,
0.01
,
0.001
,
0.0001
]
lr_strategy
=
{
"bd"
:
bd
,
"lr"
:
lr
}
use_nccl
=
True
# layers: 50, 152
layers
=
50
train
(
learning_rate
=
0.1
,
batch_size
=
8
,
num_passes
=
1
0
0
,
batch_size
=
batch_size
,
num_passes
=
1
2
0
,
init_model
=
None
,
parallel
=
False
)
parallel
=
True
,
use_nccl
=
True
,
lr_strategy
=
lr_strategy
,
layers
=
layers
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录