Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
0b48d785
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0b48d785
编写于
7月 19, 2018
作者:
Y
Yibing Liu
提交者:
GitHub
7月 19, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1051 from kuke/transformer_pf
Add profiling for transformer
上级
a751a6a8
ce6f2825
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
244 addition
and
0 deletion
+244
-0
fluid/neural_machine_translation/transformer/profile.py
fluid/neural_machine_translation/transformer/profile.py
+244
-0
未找到文件。
fluid/neural_machine_translation/transformer/profile.py
0 → 100644
浏览文件 @
0b48d785
import
os
import
time
import
argparse
import
ast
import
numpy
as
np
import
multiprocessing
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
from
train
import
split_data
,
read_multiple
,
prepare_batch_input
from
model
import
transformer
,
position_encoding_init
from
optim
import
LearningRateScheduler
from
config
import
*
import
reader
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
"Profile the training process for Transformer."
)
parser
.
add_argument
(
"--src_vocab_fpath"
,
type
=
str
,
required
=
True
,
help
=
"The path of vocabulary file of source language."
)
parser
.
add_argument
(
"--trg_vocab_fpath"
,
type
=
str
,
required
=
True
,
help
=
"The path of vocabulary file of target language."
)
parser
.
add_argument
(
"--train_file_pattern"
,
type
=
str
,
required
=
True
,
help
=
"The pattern to match training data files."
)
parser
.
add_argument
(
"--use_token_batch"
,
type
=
ast
.
literal_eval
,
default
=
True
,
help
=
"The flag indicating whether to "
"produce batch data according to token number."
)
parser
.
add_argument
(
"--batch_size"
,
type
=
int
,
default
=
2048
,
help
=
"The number of sequences contained in a mini-batch, or the maximum "
"number of tokens (include paddings) contained in a mini-batch. Note "
"that this represents the number on single device and the actual batch "
"size for multi-devices will multiply the device number."
)
parser
.
add_argument
(
"--num_iters"
,
type
=
int
,
default
=
10
,
help
=
"The maximum number of iterations profiling over."
)
parser
.
add_argument
(
"--pool_size"
,
type
=
int
,
default
=
10000
,
help
=
"The buffer size to pool data."
)
parser
.
add_argument
(
"--special_token"
,
type
=
str
,
default
=
[
"<s>"
,
"<e>"
,
"<unk>"
],
nargs
=
3
,
help
=
"The <bos>, <eos> and <unk> tokens in the dictionary."
)
parser
.
add_argument
(
'opts'
,
help
=
'See config.py for all options'
,
default
=
None
,
nargs
=
argparse
.
REMAINDER
)
parser
.
add_argument
(
'--device'
,
type
=
str
,
default
=
'GPU'
,
choices
=
[
'CPU'
,
'GPU'
],
help
=
"The device type."
)
args
=
parser
.
parse_args
()
# Append args related to dict
src_dict
=
reader
.
DataReader
.
load_dict
(
args
.
src_vocab_fpath
)
trg_dict
=
reader
.
DataReader
.
load_dict
(
args
.
trg_vocab_fpath
)
dict_args
=
[
"src_vocab_size"
,
str
(
len
(
src_dict
)),
"trg_vocab_size"
,
str
(
len
(
trg_dict
)),
"bos_idx"
,
str
(
src_dict
[
args
.
special_token
[
0
]]),
"eos_idx"
,
str
(
src_dict
[
args
.
special_token
[
1
]]),
"unk_idx"
,
str
(
src_dict
[
args
.
special_token
[
2
]])
]
merge_cfg_from_list
(
args
.
opts
+
dict_args
,
[
TrainTaskConfig
,
ModelHyperParams
])
return
args
def
train_loop
(
exe
,
train_progm
,
init
,
num_iters
,
train_data
,
dev_count
,
sum_cost
,
avg_cost
,
lr_scheduler
,
token_num
,
predict
):
data_input_names
=
encoder_data_input_fields
+
decoder_data_input_fields
[:
-
1
]
+
label_data_input_fields
util_input_names
=
encoder_util_input_fields
+
decoder_util_input_fields
start_time
=
time
.
time
()
exec_time
=
0.0
for
batch_id
,
data
in
enumerate
(
train_data
()):
if
batch_id
>=
num_iters
:
break
feed_list
=
[]
total_num_token
=
0
for
place_id
,
data_buffer
in
enumerate
(
split_data
(
data
,
num_part
=
dev_count
)):
data_input_dict
,
util_input_dict
,
num_token
=
prepare_batch_input
(
data_buffer
,
data_input_names
,
util_input_names
,
ModelHyperParams
.
eos_idx
,
ModelHyperParams
.
eos_idx
,
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_model
)
total_num_token
+=
num_token
feed_kv_pairs
=
data_input_dict
.
items
()
+
util_input_dict
.
items
()
lr_rate
=
lr_scheduler
.
update_learning_rate
()
feed_kv_pairs
+=
{
lr_scheduler
.
learning_rate
.
name
:
lr_rate
}.
items
()
feed_list
.
append
(
dict
(
feed_kv_pairs
))
if
not
init
:
for
pos_enc_param_name
in
pos_enc_param_names
:
pos_enc
=
position_encoding_init
(
ModelHyperParams
.
max_length
+
1
,
ModelHyperParams
.
d_model
)
feed_list
[
place_id
][
pos_enc_param_name
]
=
pos_enc
for
feed_dict
in
feed_list
:
feed_dict
[
sum_cost
.
name
+
"@GRAD"
]
=
1.
/
total_num_token
exe_start_time
=
time
.
time
()
if
dev_count
>
1
:
# prallel executor
outs
=
exe
.
run
(
fetch_list
=
[
sum_cost
.
name
,
token_num
.
name
],
feed
=
feed_list
)
else
:
# executor
outs
=
exe
.
run
(
fetch_list
=
[
sum_cost
,
token_num
],
feed
=
feed_list
[
0
])
exec_time
+=
time
.
time
()
-
exe_start_time
sum_cost_val
,
token_num_val
=
np
.
array
(
outs
[
0
]),
np
.
array
(
outs
[
1
])
total_sum_cost
=
sum_cost_val
.
sum
()
# sum the cost from multi-devices
total_token_num
=
token_num_val
.
sum
()
total_avg_cost
=
total_sum_cost
/
total_token_num
print
(
"batch: %d, sum loss: %f, avg loss: %f, ppl: %f"
%
(
batch_id
,
total_sum_cost
,
total_avg_cost
,
np
.
exp
([
min
(
total_avg_cost
,
100
)])))
init
=
True
return
time
.
time
()
-
start_time
,
exec_time
def
profile
(
args
):
print
args
if
args
.
device
==
'CPU'
:
TrainTaskConfig
.
use_gpu
=
False
if
not
TrainTaskConfig
.
use_gpu
:
place
=
fluid
.
CPUPlace
()
dev_count
=
multiprocessing
.
cpu_count
()
else
:
place
=
fluid
.
CUDAPlace
(
0
)
dev_count
=
fluid
.
core
.
get_cuda_device_count
()
exe
=
fluid
.
Executor
(
place
)
sum_cost
,
avg_cost
,
predict
,
token_num
=
transformer
(
ModelHyperParams
.
src_vocab_size
,
ModelHyperParams
.
trg_vocab_size
,
ModelHyperParams
.
max_length
+
1
,
ModelHyperParams
.
n_layer
,
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_key
,
ModelHyperParams
.
d_value
,
ModelHyperParams
.
d_model
,
ModelHyperParams
.
d_inner_hid
,
ModelHyperParams
.
dropout
,
ModelHyperParams
.
weight_sharing
,
TrainTaskConfig
.
label_smooth_eps
)
lr_scheduler
=
LearningRateScheduler
(
ModelHyperParams
.
d_model
,
TrainTaskConfig
.
warmup_steps
,
TrainTaskConfig
.
learning_rate
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
lr_scheduler
.
learning_rate
,
beta1
=
TrainTaskConfig
.
beta1
,
beta2
=
TrainTaskConfig
.
beta2
,
epsilon
=
TrainTaskConfig
.
eps
)
optimizer
.
minimize
(
sum_cost
)
# Initialize the parameters.
if
TrainTaskConfig
.
ckpt_path
:
fluid
.
io
.
load_persistables
(
exe
,
TrainTaskConfig
.
ckpt_path
)
lr_scheduler
.
current_steps
=
TrainTaskConfig
.
start_step
else
:
exe
.
run
(
fluid
.
framework
.
default_startup_program
())
# Disable all sorts for they will be done in the 1st batch.
train_data
=
reader
.
DataReader
(
src_vocab_fpath
=
args
.
src_vocab_fpath
,
trg_vocab_fpath
=
args
.
trg_vocab_fpath
,
fpattern
=
args
.
train_file_pattern
,
use_token_batch
=
args
.
use_token_batch
,
batch_size
=
args
.
batch_size
*
(
1
if
args
.
use_token_batch
else
dev_count
),
pool_size
=
args
.
pool_size
,
sort_type
=
'none'
,
shuffle
=
False
,
shuffle_batch
=
False
,
start_mark
=
args
.
special_token
[
0
],
end_mark
=
args
.
special_token
[
1
],
unk_mark
=
args
.
special_token
[
2
],
# count start and end tokens out
max_length
=
ModelHyperParams
.
max_length
-
2
,
clip_last_batch
=
False
)
train_data
=
read_multiple
(
reader
=
train_data
.
batch_generator
,
count
=
dev_count
if
args
.
use_token_batch
else
1
)
if
dev_count
>
1
:
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
gradient_scale_strategy
=
fluid
.
BuildStrategy
.
GradientScaleStrategy
.
Customized
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
TrainTaskConfig
.
use_gpu
,
loss_name
=
sum_cost
.
name
,
main_program
=
fluid
.
default_main_program
(),
build_strategy
=
build_strategy
)
print
(
"Warming up ..."
)
train_loop
(
exe
if
dev_count
==
1
else
train_exe
,
fluid
.
default_main_program
(),
False
,
3
,
train_data
,
dev_count
,
sum_cost
,
avg_cost
,
lr_scheduler
,
token_num
,
predict
)
print
(
"
\n
Profiling ..."
)
if
dev_count
==
1
:
with
profiler
.
profiler
(
'All'
,
'total'
,
'/tmp/profile_file'
):
total_time
,
exec_time
=
train_loop
(
exe
,
fluid
.
default_main_program
(),
True
,
args
.
num_iters
,
train_data
,
dev_count
,
sum_cost
,
avg_cost
,
lr_scheduler
,
token_num
,
predict
)
else
:
total_time
,
exec_time
=
train_loop
(
train_exe
,
fluid
.
default_main_program
(),
True
,
args
.
num_iters
,
train_data
,
dev_count
,
sum_cost
,
avg_cost
,
lr_scheduler
,
token_num
,
predict
)
print
(
"Elapsed time: total %f s, in executor %f s"
%
(
total_time
,
exec_time
))
if
__name__
==
"__main__"
:
args
=
parse_args
()
profile
(
args
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录