Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
09f7796c
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
09f7796c
编写于
7月 01, 2020
作者:
D
Double_V
提交者:
GitHub
7月 01, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix fconv in paddle 1.8 (#4705)
上级
5c244bf1
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
178 addition
and
248 deletion
+178
-248
PaddleCV/tracking/ltr/models/siamese/target_estimator_net.py
PaddleCV/tracking/ltr/models/siamese/target_estimator_net.py
+2
-2
PaddleCV/tracking/pytracking/features/augmentation.py
PaddleCV/tracking/pytracking/features/augmentation.py
+3
-3
PaddleCV/tracking/pytracking/libs/Fconv2d.py
PaddleCV/tracking/pytracking/libs/Fconv2d.py
+170
-240
PaddleCV/tracking/pytracking/libs/operation.py
PaddleCV/tracking/pytracking/libs/operation.py
+3
-3
未找到文件。
PaddleCV/tracking/ltr/models/siamese/target_estimator_net.py
浏览文件 @
09f7796c
...
@@ -3,6 +3,7 @@ from paddle.fluid import dygraph
...
@@ -3,6 +3,7 @@ from paddle.fluid import dygraph
from
paddle.fluid.dygraph
import
nn
from
paddle.fluid.dygraph
import
nn
from
pytracking.libs.Fconv2d
import
Conv2D
from
pytracking.libs.Fconv2d
import
Conv2D
from
pytracking.libs.Fconv2d
import
FConv2D
class
SiamFCEstimator
(
dygraph
.
layers
.
Layer
):
class
SiamFCEstimator
(
dygraph
.
layers
.
Layer
):
...
@@ -40,8 +41,7 @@ class SiamFCEstimator(dygraph.layers.Layer):
...
@@ -40,8 +41,7 @@ class SiamFCEstimator(dygraph.layers.Layer):
instance
=
fluid
.
layers
.
reshape
(
instance
=
fluid
.
layers
.
reshape
(
instance
,
shape
=
[
1
,
-
1
,
shape
[
2
],
shape
[
3
]])
instance
,
shape
=
[
1
,
-
1
,
shape
[
2
],
shape
[
3
]])
cross_conv
=
Conv2D
(
stride
=
1
,
padding
=
0
,
dilation
=
1
,
groups
=
shape
[
0
])
score_map
=
FConv2D
(
instance
,
exemplar
,
stride
=
1
,
padding
=
0
,
dilation
=
1
,
groups
=
shape
[
0
])
score_map
=
cross_conv
(
instance
,
exemplar
)
score_map
=
fluid
.
layers
.
transpose
(
score_map
,
[
1
,
0
,
2
,
3
])
score_map
=
fluid
.
layers
.
transpose
(
score_map
,
[
1
,
0
,
2
,
3
])
score_map
=
self
.
adjust_conv
(
score_map
)
score_map
=
self
.
adjust_conv
(
score_map
)
return
score_map
return
score_map
PaddleCV/tracking/pytracking/features/augmentation.py
浏览文件 @
09f7796c
...
@@ -6,7 +6,7 @@ from paddle.fluid import layers
...
@@ -6,7 +6,7 @@ from paddle.fluid import layers
import
cv2
as
cv
import
cv2
as
cv
from
pytracking.features.preprocessing
import
numpy_to_paddle
,
paddle_to_numpy
from
pytracking.features.preprocessing
import
numpy_to_paddle
,
paddle_to_numpy
from
pytracking.libs.Fconv2d
import
F
conv2d
from
pytracking.libs.Fconv2d
import
F
Conv2D
from
pytracking.libs.paddle_utils
import
PTensor
,
_padding
,
n2p
from
pytracking.libs.paddle_utils
import
PTensor
,
_padding
,
n2p
...
@@ -192,13 +192,13 @@ class Blur(Transform):
...
@@ -192,13 +192,13 @@ class Blur(Transform):
if
isinstance
(
image
,
PTensor
):
if
isinstance
(
image
,
PTensor
):
sz
=
image
.
shape
[
2
:]
sz
=
image
.
shape
[
2
:]
filter
=
[
n2p
(
f
)
for
f
in
self
.
filter_np
]
filter
=
[
n2p
(
f
)
for
f
in
self
.
filter_np
]
im1
=
F
conv2d
(
im1
=
F
Conv2D
(
layers
.
reshape
(
image
,
[
-
1
,
1
,
sz
[
0
],
sz
[
1
]]),
layers
.
reshape
(
image
,
[
-
1
,
1
,
sz
[
0
],
sz
[
1
]]),
filter
[
0
],
filter
[
0
],
padding
=
(
self
.
filter_size
[
0
],
0
))
padding
=
(
self
.
filter_size
[
0
],
0
))
return
self
.
crop_to_output
(
return
self
.
crop_to_output
(
layers
.
reshape
(
layers
.
reshape
(
F
conv2d
(
F
Conv2D
(
im1
,
filter
[
1
],
padding
=
(
0
,
self
.
filter_size
[
1
])),
im1
,
filter
[
1
],
padding
=
(
0
,
self
.
filter_size
[
1
])),
[
1
,
-
1
,
sz
[
0
],
sz
[
1
]]))
[
1
,
-
1
,
sz
[
0
],
sz
[
1
]]))
else
:
else
:
...
...
PaddleCV/tracking/pytracking/libs/Fconv2d.py
浏览文件 @
09f7796c
from
__future__
import
print_function
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.layer_object_helper
import
LayerObjectHelper
from
paddle.fluid.initializer
import
Normal
,
Constant
,
NumpyArrayInitializer
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.framework
import
Variable
,
OpProtoHolder
,
in_dygraph_mode
from
paddle.fluid.layers
import
utils
import
numpy
as
np
import
numpy
as
np
from
paddle.fluid.framework
import
Variable
,
in_dygraph_mode
import
paddle
from
paddle.fluid
import
core
,
dygraph_utils
import
paddle.fluid
as
fluid
from
paddle.fluid.layers
import
nn
,
utils
from
paddle.fluid.data_feeder
import
check_variable_and_dtype
from
paddle.fluid
import
core
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.initializer
import
Normal
,
Constant
,
NumpyArrayInitializer
from
paddle.fluid.dygraph
import
dygraph_utils
from
paddle.fluid.framework
import
Variable
,
OpProtoHolder
,
in_dygraph_mode
from
paddle.fluid.layers
import
utils
def
Fconv2d
(
def
_is_list_or_tuple
(
input
):
input
,
return
isinstance
(
input
,
(
list
,
tuple
))
filter
,
stride
=
1
,
padding
=
0
,
dilation
=
1
,
groups
=
1
,
use_cudnn
=
True
,
):
"""
Similar with conv2d, this is a convolution2D layers. Difference
is filter can be token as input directly instead of setting filter size
and number of fliters. Filter is a 4-D tensor with shape
[num_filter, num_channel, filter_size_h, filter_size_w].
Args:
input (Variable): The input image with [N, C, H, W] format.
filter(Variable): The input filter with [out_channels, in_channels, H, W] format.
stride (int|tuple): The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: stride = 1.
padding (int|tuple): The padding size. If padding is a tuple, it must
contain two integers, (padding_H, padding_W). Otherwise, the
padding_H = padding_W = padding. Default: padding = 0.
dilation (int|tuple): The dilation size. If dilation is a tuple, it must
contain two integers, (dilation_H, dilation_W). Otherwise, the
dilation_H = dilation_W = dilation. Default: dilation = 1.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True
act (str): Activation type, if it is set to None, activation is not appended.
Default: None
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None
Returns:
Variable: The tensor variable storing the convolution and \
non-linearity activation result.
Raises:
ValueError: If the shapes of input, filter_size, stride, padding and
groups mismatch.
Examples:
.. code-block:: python
data = fluid.data(name='data', shape=[None, 3, 32, 32], \
dtype='float32')
filter = fluid.data(name='filter',shape=[10,3,3,3], \
dtype='float32')
conv2d = fluid.layers.conv2d(input=data,
filter=filter,
act="relu")
"""
conv_with_filter
=
Conv2D
(
stride
=
stride
,
padding
=
padding
,
dilation
=
dilation
,
groups
=
groups
)
return
conv_with_filter
(
input
,
filter
)
class
Conv2D
(
fluid
.
dygraph
.
layers
.
Layer
):
def
_zero_padding_in_batch_and_channel
(
padding
,
channel_last
):
"""
if
channel_last
:
This interface is used to construct a callable object of the ``Conv2D`` class.
return
list
(
padding
[
0
])
==
[
0
,
0
]
and
list
(
padding
[
-
1
])
==
[
0
,
0
]
For more details, refer to code examples.
else
:
The convolution2D layer calculates the output based on the input, filter
return
list
(
padding
[
0
])
==
[
0
,
0
]
and
list
(
padding
[
1
])
==
[
0
,
0
]
and strides, paddings, dilations, groups parameters. Input and
Output are in NCHW format, where N is batch size, C is the number of
the feature map, H is the height of the feature map, and W is the width of the feature map.
Filter's shape is [MCHW] , where M is the number of output feature map,
C is the number of input feature map, H is the height of the filter,
and W is the width of the filter. If the groups is greater than 1,
C will equal the number of input feature map divided by the groups.
Please refer to UFLDL's `convolution
<http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
for more detials.
If bias attribution and activation type are provided, bias is added to the
output of the convolution, and the corresponding activation function is
applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out =
\\
sigma (W
\\
ast X + b)
Where:
* :math:`X`: Input value, a ``Tensor`` with NCHW format.
* :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
* :math:`
\\
ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
* :math:`
\\
sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
- Input:
Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
- Output:
Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
Where
.. math::
H_{out}&=
\\
frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1
\\\\
W_{out}&=
\\
frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
Parameters:
num_channels(int): The number of channels in the input image.
num_filters(int): The number of filter. It is as same as the output
feature map.
filter_size (int or tuple): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square.
stride (int or tuple, optional): The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: 1.
padding (int or tuple, optional): The padding size. If padding is a tuple, it must
contain two integers, (padding_H, padding_W). Otherwise, the
padding_H = padding_W = padding. Default: 0.
dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
contain two integers, (dilation_H, dilation_W). Otherwise, the
dilation_H = dilation_W = dilation. Default: 1.
groups (int, optional): The groups number of the Conv2d Layer. According to grouped
convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only
connected to the second half of the input channels. Default: 1.
param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
and the :math:`std` is :math:`(
\\
frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True.
act (str, optional): Activation type, if it is set to None, activation is not appended.
Default: None.
dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
Attribute:
**weight** (Parameter): the learnable weights of filter of this layer.
**bias** (Parameter or None): the learnable bias of this layer.
Returns:
None
Raises:
ValueError: if ``use_cudnn`` is not a bool value.
Examples:
.. code-block:: python
from paddle.fluid.dygraph.base import to_variable
import paddle.fluid as fluid
from paddle.fluid.dygraph import Conv2D
import numpy as np
data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
with fluid.dygraph.guard():
conv2d = Conv2D(3, 2, 3)
data = to_variable(data)
conv = conv2d(data)
"""
def
__init__
(
self
,
def
_exclude_padding_in_batch_and_channel
(
padding
,
channel_last
):
stride
=
1
,
padding_
=
padding
[
1
:
-
1
]
if
channel_last
else
padding
[
2
:]
padding
=
0
,
padding_
=
[
elem
for
pad_a_dim
in
padding_
for
elem
in
pad_a_dim
]
dilation
=
1
,
return
padding_
groups
=
None
,
use_cudnn
=
True
,
act
=
None
,
dtype
=
'float32'
):
super
(
Conv2D
,
self
).
__init__
()
self
.
_groups
=
groups
self
.
_stride
=
utils
.
convert_to_list
(
stride
,
2
,
'stride'
)
self
.
_padding
=
utils
.
convert_to_list
(
padding
,
2
,
'padding'
)
self
.
_dilation
=
utils
.
convert_to_list
(
dilation
,
2
,
'dilation'
)
self
.
_act
=
act
if
not
isinstance
(
use_cudnn
,
bool
):
raise
ValueError
(
"use_cudnn should be True or False"
)
self
.
_use_cudnn
=
use_cudnn
self
.
_dtype
=
dtype
# TODO: recover the usage of depthwise_conv2d when it's
# kernel fixed https://github.com/PaddlePaddle/Paddle/issues/17098
# if (self._num_channels == self._groups and
# num_filters % self._num_channels == 0 and not self._use_cudnn):
# self._l_type = 'depthwise_conv2d'
# else:
# self._l_type = 'conv2d'
self
.
_l_type
=
'conv2d'
def
forward
(
self
,
input
,
weight
,
bias
=
None
):
def
_update_padding_nd
(
padding
,
channel_last
,
num_dims
):
inputs
=
{
if
isinstance
(
padding
,
str
):
'Input'
:
[
input
],
padding
=
padding
.
upper
()
'Filter'
:
[
weight
],
if
padding
not
in
[
"SAME"
,
"VALID"
]:
}
raise
ValueError
(
"Unknown padding: '{}'. It can only be 'SAME' or 'VALID'."
.
format
(
padding
))
if
padding
==
"VALID"
:
padding_algorithm
=
"VALID"
padding
=
[
0
]
*
num_dims
else
:
padding_algorithm
=
"SAME"
padding
=
[
0
]
*
num_dims
elif
_is_list_or_tuple
(
padding
):
# for padding like
# [(pad_before, pad_after), (pad_before, pad_after), ...]
# padding for batch_dim and channel_dim included
if
len
(
padding
)
==
2
+
num_dims
and
_is_list_or_tuple
(
padding
[
0
]):
if
not
_zero_padding_in_batch_and_channel
(
padding
,
channel_last
):
raise
ValueError
(
"Non-zero padding({}) in the batch or channel dimensions "
"is not supported."
.
format
(
padding
))
padding_algorithm
=
"EXPLICIT"
padding
=
_exclude_padding_in_batch_and_channel
(
padding
,
channel_last
)
if
utils
.
_is_symmetric_padding
(
padding
,
num_dims
):
padding
=
padding
[
0
::
2
]
# for padding like [pad_before, pad_after, pad_before, pad_after, ...]
elif
len
(
padding
)
==
2
*
num_dims
and
isinstance
(
padding
[
0
],
int
):
padding_algorithm
=
"EXPLICIT"
padding
=
utils
.
convert_to_list
(
padding
,
2
*
num_dims
,
'padding'
)
if
utils
.
_is_symmetric_padding
(
padding
,
num_dims
):
padding
=
padding
[
0
::
2
]
# for padding like [pad_d1, pad_d2, ...]
elif
len
(
padding
)
==
num_dims
and
isinstance
(
padding
[
0
],
int
):
padding_algorithm
=
"EXPLICIT"
padding
=
utils
.
convert_to_list
(
padding
,
num_dims
,
'padding'
)
else
:
raise
ValueError
(
"In valid padding: {}"
.
format
(
padding
))
# for integer padding
else
:
padding_algorithm
=
"EXPLICIT"
padding
=
utils
.
convert_to_list
(
padding
,
num_dims
,
'padding'
)
return
padding
,
padding_algorithm
def
FConv2D
(
input
,
weight
,
bias
=
None
,
padding
=
0
,
stride
=
1
,
dilation
=
1
,
groups
=
1
,
use_cudnn
=
True
,
act
=
None
,
data_format
=
"NCHW"
,
name
=
None
):
# entry checks
if
not
isinstance
(
use_cudnn
,
bool
):
raise
ValueError
(
"Attr(use_cudnn) should be True or False. "
"Received Attr(use_cudnn): {}."
.
format
(
use_cudnn
))
if
data_format
not
in
[
"NCHW"
,
"NHWC"
]:
raise
ValueError
(
"Attr(data_format) should be 'NCHW' or 'NHWC'. "
"Received Attr(data_format): {}."
.
format
(
data_format
))
channel_last
=
(
data_format
==
"NHWC"
)
channel_dim
=
-
1
if
channel_last
else
1
num_channels
=
input
.
shape
[
channel_dim
]
num_filters
=
weight
.
shape
[
0
]
if
num_channels
<
0
:
raise
ValueError
(
"The channel dimmention of the input({}) "
"should be defined. Received: {}."
.
format
(
input
.
shape
,
num_channels
))
if
num_channels
%
groups
!=
0
:
raise
ValueError
(
"the channel of input must be divisible by groups,"
"received: the channel of input is {}, the shape of input is {}"
", the groups is {}"
.
format
(
num_channels
,
input
.
shape
,
groups
))
if
num_filters
%
groups
!=
0
:
raise
ValueError
(
"the number of filters must be divisible by groups,"
"received: the number of filters is {}, the shape of weight is {}"
", the groups is {}"
.
format
(
num_filters
,
weight
.
shape
,
groups
))
# update attrs
padding
,
padding_algorithm
=
_update_padding_nd
(
padding
,
channel_last
,
2
)
stride
=
utils
.
convert_to_list
(
stride
,
2
,
'stride'
)
dilation
=
utils
.
convert_to_list
(
dilation
,
2
,
'dilation'
)
l_type
=
"conv2d"
if
(
num_channels
==
groups
and
num_filters
%
num_channels
==
0
and
not
use_cudnn
):
l_type
=
'depthwise_conv2d'
inputs
=
{
'Input'
:
[
input
],
'Filter'
:
[
weight
]}
attrs
=
{
'strides'
:
stride
,
'paddings'
:
padding
,
'dilations'
:
dilation
,
'groups'
:
groups
,
'use_cudnn'
:
use_cudnn
,
'use_mkldnn'
:
False
,
'fuse_relu_before_depthwise_conv'
:
False
,
"padding_algorithm"
:
padding_algorithm
,
"data_format"
:
data_format
}
if
in_dygraph_mode
():
attrs
=
(
'strides'
,
stride
,
'paddings'
,
padding
,
'dilations'
,
dilation
,
'groups'
,
groups
,
'use_cudnn'
,
use_cudnn
,
'use_mkldnn'
,
False
,
'fuse_relu_before_depthwise_conv'
,
False
,
"padding_algorithm"
,
padding_algorithm
,
"data_format"
,
data_format
)
pre_bias
=
getattr
(
core
.
ops
,
l_type
)(
input
,
weight
,
*
attrs
)
if
bias
is
not
None
:
pre_act
=
nn
.
elementwise_add
(
pre_bias
,
bias
,
axis
=
channel_dim
)
else
:
pre_act
=
pre_bias
out
=
dygraph_utils
.
_append_activation_in_dygraph
(
pre_act
,
act
,
use_cudnn
=
use_cudnn
)
else
:
inputs
=
{
'Input'
:
[
input
],
'Filter'
:
[
weight
]}
attrs
=
{
attrs
=
{
'strides'
:
s
elf
.
_s
tride
,
'strides'
:
stride
,
'paddings'
:
self
.
_
padding
,
'paddings'
:
padding
,
'dilations'
:
self
.
_
dilation
,
'dilations'
:
dilation
,
'groups'
:
self
.
_groups
if
self
.
_groups
else
1
,
'groups'
:
groups
,
'use_cudnn'
:
self
.
_
use_cudnn
,
'use_cudnn'
:
use_cudnn
,
'use_mkldnn'
:
False
,
'use_mkldnn'
:
False
,
'fuse_relu_before_depthwise_conv'
:
False
,
"padding_algorithm"
:
padding_algorithm
,
"data_format"
:
data_format
}
}
check_variable_and_dtype
(
input
,
'input'
,
[
'float16'
,
'float32'
,
'float64'
],
'conv2d'
)
helper
=
LayerHelper
(
l_type
,
**
locals
())
dtype
=
helper
.
input_dtype
()
pre_bias
=
helper
.
create_variable_for_type_inference
(
dtype
)
outputs
=
{
"Output"
:
[
pre_bias
]}
helper
.
append_op
(
type
=
l_type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
)
if
bias
is
not
None
:
pre_act
=
nn
.
elementwise_add
(
pre_bias
,
bias
,
axis
=
channel_dim
)
else
:
pre_act
=
pre_bias
out
=
helper
.
append_activation
(
pre_act
)
return
out
if
in_dygraph_mode
():
outs
=
core
.
ops
.
conv2d
(
inputs
,
attrs
)
pre_bias
=
outs
[
'Output'
][
0
]
pre_act
=
dygraph_utils
.
_append_bias_in_dygraph
(
pre_bias
,
bias
,
1
)
return
dygraph_utils
.
_append_activation_in_dygraph
(
pre_act
,
self
.
_act
)
pre_bias
=
self
.
_helper
.
create_variable_for_type_inference
(
def
test_conv2d_with_filter
():
dtype
=
self
.
_dtype
)
self
.
_helper
.
append_op
(
import
paddle.fluid.dygraph
as
dygraph
type
=
self
.
_l_type
,
import
numpy
as
np
inputs
=
{
'Input'
:
input
,
'Filter'
:
weight
,
},
outputs
=
{
"Output"
:
pre_bias
},
attrs
=
attrs
)
if
bias
is
not
None
:
exemplar
=
np
.
random
.
random
((
8
,
4
,
6
,
6
)).
astype
(
np
.
float32
)
pre_act
=
self
.
_helper
.
create_variable_for_type_inference
(
instance
=
np
.
random
.
random
((
8
,
4
,
22
,
22
)).
astype
(
np
.
float32
)
dtype
=
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
'elementwise_add'
,
inputs
=
{
'X'
:
[
pre_bias
],
'Y'
:
[
bias
]},
outputs
=
{
'Out'
:
[
pre_act
]},
attrs
=
{
'axis'
:
1
})
else
:
pre_act
=
pre_bias
# Currently, we don't support inplace in dygraph mode
with
dygraph
.
guard
():
return
self
.
_helper
.
append_activation
(
pre_act
,
act
=
self
.
_act
)
exem
=
dygraph
.
to_variable
(
exemplar
)
inst
=
dygraph
.
to_variable
(
instance
)
res
=
FConv2D
(
inst
,
exem
,
groups
=
1
)
print
(
res
.
shape
)
\ No newline at end of file
PaddleCV/tracking/pytracking/libs/operation.py
浏览文件 @
09f7796c
from
paddle
import
fluid
from
paddle
import
fluid
from
paddle.fluid
import
layers
from
paddle.fluid
import
layers
from
pytracking.libs.Fconv2d
import
F
conv2d
from
pytracking.libs.Fconv2d
import
F
Conv2D
from
pytracking.libs.tensorlist
import
tensor_operation
,
TensorList
from
pytracking.libs.tensorlist
import
tensor_operation
,
TensorList
from
paddle.fluid.framework
import
Variable
as
PTensor
from
paddle.fluid.framework
import
Variable
as
PTensor
...
@@ -37,7 +37,7 @@ def conv2d(input: PTensor,
...
@@ -37,7 +37,7 @@ def conv2d(input: PTensor,
raise
ValueError
(
'Unknown mode for padding.'
)
raise
ValueError
(
'Unknown mode for padding.'
)
assert
bias
is
None
assert
bias
is
None
out
=
F
conv2d
(
out
=
F
Conv2D
(
input
,
input
,
weight
,
weight
,
stride
=
stride
,
stride
=
stride
,
...
@@ -56,4 +56,4 @@ def conv1x1(input: PTensor, weight: PTensor):
...
@@ -56,4 +56,4 @@ def conv1x1(input: PTensor, weight: PTensor):
if
weight
is
None
:
if
weight
is
None
:
return
input
return
input
return
F
conv2d
(
input
,
weight
)
return
F
Conv2D
(
input
,
weight
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录