Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
05916d00
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
05916d00
编写于
10月 25, 2018
作者:
G
Guo Sheng
提交者:
GitHub
10月 25, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1307 from gongweibao/cloudtest2
Add nccl2 support
上级
278e368a
b48b902a
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
147 addition
and
35 deletion
+147
-35
fluid/neural_machine_translation/transformer/train.py
fluid/neural_machine_translation/transformer/train.py
+147
-35
未找到文件。
fluid/neural_machine_translation/transformer/train.py
浏览文件 @
05916d00
import
argparse
import
argparse
import
ast
import
ast
import
copy
import
logging
import
multiprocessing
import
multiprocessing
import
os
import
os
import
six
import
six
import
sys
import
time
import
time
import
numpy
as
np
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid.transpiler.details
import
program_to_code
import
reader
import
reader
from
config
import
*
from
config
import
*
...
@@ -97,6 +101,11 @@ def parse_args():
...
@@ -97,6 +101,11 @@ def parse_args():
default
=
'GPU'
,
default
=
'GPU'
,
choices
=
[
'CPU'
,
'GPU'
],
choices
=
[
'CPU'
,
'GPU'
],
help
=
"The device type."
)
help
=
"The device type."
)
parser
.
add_argument
(
'--update_method'
,
choices
=
(
"pserver"
,
"nccl2"
),
default
=
"pserver"
,
help
=
'Update method.'
)
parser
.
add_argument
(
parser
.
add_argument
(
'--sync'
,
type
=
ast
.
literal_eval
,
default
=
True
,
help
=
"sync mode."
)
'--sync'
,
type
=
ast
.
literal_eval
,
default
=
True
,
help
=
"sync mode."
)
parser
.
add_argument
(
parser
.
add_argument
(
...
@@ -115,6 +124,11 @@ def parse_args():
...
@@ -115,6 +124,11 @@ def parse_args():
type
=
ast
.
literal_eval
,
type
=
ast
.
literal_eval
,
default
=
True
,
default
=
True
,
help
=
"The flag indicating whether to use py_reader."
)
help
=
"The flag indicating whether to use py_reader."
)
parser
.
add_argument
(
"--fetch_steps"
,
type
=
int
,
default
=
100
,
help
=
"The frequency to fetch and print output."
)
args
=
parser
.
parse_args
()
args
=
parser
.
parse_args
()
# Append args related to dict
# Append args related to dict
...
@@ -131,6 +145,25 @@ def parse_args():
...
@@ -131,6 +145,25 @@ def parse_args():
return
args
return
args
def
append_nccl2_prepare
(
trainer_id
,
worker_endpoints
,
current_endpoint
):
assert
(
trainer_id
>=
0
and
len
(
worker_endpoints
)
>
1
and
current_endpoint
in
worker_endpoints
)
eps
=
copy
.
deepcopy
(
worker_endpoints
)
eps
.
remove
(
current_endpoint
)
nccl_id_var
=
fluid
.
default_startup_program
().
global_block
().
create_var
(
name
=
"NCCLID"
,
persistable
=
True
,
type
=
fluid
.
core
.
VarDesc
.
VarType
.
RAW
)
fluid
.
default_startup_program
().
global_block
().
append_op
(
type
=
"gen_nccl_id"
,
inputs
=
{},
outputs
=
{
"NCCLID"
:
nccl_id_var
},
attrs
=
{
"endpoint"
:
current_endpoint
,
"endpoint_list"
:
eps
,
"trainer_id"
:
trainer_id
})
return
nccl_id_var
def
pad_batch_data
(
insts
,
def
pad_batch_data
(
insts
,
pad_idx
,
pad_idx
,
n_head
,
n_head
,
...
@@ -410,15 +443,25 @@ def test_context(exe, train_exe, dev_count):
...
@@ -410,15 +443,25 @@ def test_context(exe, train_exe, dev_count):
return
test
return
test
def
train_loop
(
exe
,
train_prog
,
startup_prog
,
dev_count
,
sum_cost
,
avg_cost
,
def
train_loop
(
exe
,
token_num
,
predict
,
pyreader
):
train_prog
,
startup_prog
,
dev_count
,
sum_cost
,
avg_cost
,
token_num
,
predict
,
pyreader
,
nccl2_num_trainers
=
1
,
nccl2_trainer_id
=
0
):
# Initialize the parameters.
# Initialize the parameters.
if
TrainTaskConfig
.
ckpt_path
:
if
TrainTaskConfig
.
ckpt_path
:
fluid
.
io
.
load_persistables
(
exe
,
TrainTaskConfig
.
ckpt_path
)
fluid
.
io
.
load_persistables
(
exe
,
TrainTaskConfig
.
ckpt_path
)
else
:
else
:
print
(
"init fluid.framework.default_startup_program"
)
logging
.
info
(
"init fluid.framework.default_startup_program"
)
exe
.
run
(
startup_prog
)
exe
.
run
(
startup_prog
)
logging
.
info
(
"begin reader"
)
train_data
=
prepare_data_generator
(
train_data
=
prepare_data_generator
(
args
,
is_test
=
False
,
count
=
dev_count
,
pyreader
=
pyreader
)
args
,
is_test
=
False
,
count
=
dev_count
,
pyreader
=
pyreader
)
...
@@ -431,12 +474,16 @@ def train_loop(exe, train_prog, startup_prog, dev_count, sum_cost, avg_cost,
...
@@ -431,12 +474,16 @@ def train_loop(exe, train_prog, startup_prog, dev_count, sum_cost, avg_cost,
# use token average cost among multi-devices. and the gradient scale is
# use token average cost among multi-devices. and the gradient scale is
# `1 / token_number` for average cost.
# `1 / token_number` for average cost.
# build_strategy.gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.Customized
# build_strategy.gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.Customized
logging
.
info
(
"begin executor"
)
train_exe
=
fluid
.
ParallelExecutor
(
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
TrainTaskConfig
.
use_gpu
,
use_cuda
=
TrainTaskConfig
.
use_gpu
,
loss_name
=
avg_cost
.
name
,
loss_name
=
avg_cost
.
name
,
main_program
=
train_prog
,
main_program
=
train_prog
,
build_strategy
=
build_strategy
,
build_strategy
=
build_strategy
,
exec_strategy
=
exec_strategy
)
exec_strategy
=
exec_strategy
,
num_trainers
=
nccl2_num_trainers
,
trainer_id
=
nccl2_trainer_id
)
if
args
.
val_file_pattern
is
not
None
:
if
args
.
val_file_pattern
is
not
None
:
test
=
test_context
(
exe
,
train_exe
,
dev_count
)
test
=
test_context
(
exe
,
train_exe
,
dev_count
)
...
@@ -450,6 +497,8 @@ def train_loop(exe, train_prog, startup_prog, dev_count, sum_cost, avg_cost,
...
@@ -450,6 +497,8 @@ def train_loop(exe, train_prog, startup_prog, dev_count, sum_cost, avg_cost,
step_idx
=
0
step_idx
=
0
init_flag
=
True
init_flag
=
True
logging
.
info
(
"begin train"
)
for
pass_id
in
six
.
moves
.
xrange
(
TrainTaskConfig
.
pass_num
):
for
pass_id
in
six
.
moves
.
xrange
(
TrainTaskConfig
.
pass_num
):
pass_start_time
=
time
.
time
()
pass_start_time
=
time
.
time
()
...
@@ -464,25 +513,38 @@ def train_loop(exe, train_prog, startup_prog, dev_count, sum_cost, avg_cost,
...
@@ -464,25 +513,38 @@ def train_loop(exe, train_prog, startup_prog, dev_count, sum_cost, avg_cost,
try
:
try
:
feed_dict_list
=
prepare_feed_dict_list
(
data_generator
,
feed_dict_list
=
prepare_feed_dict_list
(
data_generator
,
init_flag
,
dev_count
)
init_flag
,
dev_count
)
outs
=
train_exe
.
run
(
outs
=
train_exe
.
run
(
fetch_list
=
[
sum_cost
.
name
,
token_num
.
name
],
fetch_list
=
[
sum_cost
.
name
,
token_num
.
name
]
if
step_idx
%
args
.
fetch_steps
==
0
else
[],
feed
=
feed_dict_list
)
feed
=
feed_dict_list
)
sum_cost_val
,
token_num_val
=
np
.
array
(
outs
[
0
]),
np
.
array
(
outs
[
1
])
if
step_idx
%
args
.
fetch_steps
==
0
:
# sum the cost from multi-devices
sum_cost_val
,
token_num_val
=
np
.
array
(
outs
[
0
]),
np
.
array
(
total_sum_cost
=
sum_cost_val
.
sum
()
outs
[
1
])
total_token_num
=
token_num_val
.
sum
()
# sum the cost from multi-devices
total_avg_cost
=
total_sum_cost
/
total_token_num
total_sum_cost
=
sum_cost_val
.
sum
()
total_token_num
=
token_num_val
.
sum
()
print
(
"step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
total_avg_cost
=
total_sum_cost
/
total_token_num
"normalized loss: %f, ppl: %f"
%
(
step_idx
,
pass_id
,
batch_id
,
total_avg_cost
,
if
step_idx
==
0
:
total_avg_cost
-
loss_normalizer
,
logging
.
info
(
np
.
exp
([
min
(
total_avg_cost
,
100
)])))
"step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
"normalized loss: %f, ppl: %f"
%
if
step_idx
%
int
(
TrainTaskConfig
.
(
step_idx
,
pass_id
,
batch_id
,
total_avg_cost
,
save_freq
)
==
TrainTaskConfig
.
save_freq
-
1
:
total_avg_cost
-
loss_normalizer
,
np
.
exp
([
min
(
total_avg_cost
,
100
)])))
avg_batch_time
=
time
.
time
()
else
:
logging
.
info
(
"step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
"normalized loss: %f, ppl: %f, speed: %.2f step/s"
%
(
step_idx
,
pass_id
,
batch_id
,
total_avg_cost
,
total_avg_cost
-
loss_normalizer
,
np
.
exp
([
min
(
total_avg_cost
,
100
)]),
args
.
fetch_steps
/
(
time
.
time
()
-
avg_batch_time
)))
avg_batch_time
=
time
.
time
()
if
step_idx
%
TrainTaskConfig
.
save_freq
==
0
and
step_idx
>
0
:
fluid
.
io
.
save_persistables
(
fluid
.
io
.
save_persistables
(
exe
,
exe
,
os
.
path
.
join
(
TrainTaskConfig
.
ckpt_dir
,
os
.
path
.
join
(
TrainTaskConfig
.
ckpt_dir
,
...
@@ -492,6 +554,7 @@ def train_loop(exe, train_prog, startup_prog, dev_count, sum_cost, avg_cost,
...
@@ -492,6 +554,7 @@ def train_loop(exe, train_prog, startup_prog, dev_count, sum_cost, avg_cost,
os
.
path
.
join
(
TrainTaskConfig
.
model_dir
,
os
.
path
.
join
(
TrainTaskConfig
.
model_dir
,
"iter_"
+
str
(
step_idx
)
+
".infer.model"
),
"iter_"
+
str
(
step_idx
)
+
".infer.model"
),
train_prog
)
train_prog
)
init_flag
=
False
init_flag
=
False
batch_id
+=
1
batch_id
+=
1
step_idx
+=
1
step_idx
+=
1
...
@@ -505,13 +568,13 @@ def train_loop(exe, train_prog, startup_prog, dev_count, sum_cost, avg_cost,
...
@@ -505,13 +568,13 @@ def train_loop(exe, train_prog, startup_prog, dev_count, sum_cost, avg_cost,
# Validate and save the persistable.
# Validate and save the persistable.
if
args
.
val_file_pattern
is
not
None
:
if
args
.
val_file_pattern
is
not
None
:
val_avg_cost
,
val_ppl
=
test
()
val_avg_cost
,
val_ppl
=
test
()
print
(
logging
.
info
(
"epoch: %d, val avg loss: %f, val normalized loss: %f, val ppl: %f,"
"epoch: %d, val avg loss: %f, val normalized loss: %f, val ppl: %f,"
" consumed %fs"
%
(
pass_id
,
val_avg_cost
,
" consumed %fs"
%
(
pass_id
,
val_avg_cost
,
val_avg_cost
-
loss_normalizer
,
val_ppl
,
val_avg_cost
-
loss_normalizer
,
val_ppl
,
time_consumed
))
time_consumed
))
else
:
else
:
print
(
"epoch: %d, consumed %fs"
%
(
pass_id
,
time_consumed
))
logging
.
info
(
"epoch: %d, consumed %fs"
%
(
pass_id
,
time_consumed
))
if
not
args
.
enable_ce
:
if
not
args
.
enable_ce
:
fluid
.
io
.
save_persistables
(
fluid
.
io
.
save_persistables
(
exe
,
exe
,
...
@@ -531,7 +594,7 @@ def train(args):
...
@@ -531,7 +594,7 @@ def train(args):
is_local
=
os
.
getenv
(
"PADDLE_IS_LOCAL"
,
"1"
)
is_local
=
os
.
getenv
(
"PADDLE_IS_LOCAL"
,
"1"
)
if
is_local
==
'0'
:
if
is_local
==
'0'
:
args
.
local
=
False
args
.
local
=
False
print
(
args
)
logging
.
info
(
args
)
if
args
.
device
==
'CPU'
:
if
args
.
device
==
'CPU'
:
TrainTaskConfig
.
use_gpu
=
False
TrainTaskConfig
.
use_gpu
=
False
...
@@ -576,15 +639,21 @@ def train(args):
...
@@ -576,15 +639,21 @@ def train(args):
use_py_reader
=
args
.
use_py_reader
,
use_py_reader
=
args
.
use_py_reader
,
is_test
=
False
)
is_test
=
False
)
if
args
.
local
:
optimizer
=
None
if
args
.
sync
:
lr_decay
=
fluid
.
layers
.
learning_rate_scheduler
.
noam_decay
(
lr_decay
=
fluid
.
layers
.
learning_rate_scheduler
.
noam_decay
(
ModelHyperParams
.
d_model
,
TrainTaskConfig
.
warmup_steps
)
ModelHyperParams
.
d_model
,
TrainTaskConfig
.
warmup_steps
)
print
(
"before adam"
)
with
fluid
.
default_main_program
().
_lr_schedule_guard
():
learning_rate
=
lr_decay
*
TrainTaskConfig
.
learning_rate
optimizer
=
fluid
.
optimizer
.
Adam
(
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
l
r_decay
*
TrainTaskConfig
.
l
earning_rate
,
learning_rate
=
learning_rate
,
beta1
=
TrainTaskConfig
.
beta1
,
beta1
=
TrainTaskConfig
.
beta1
,
beta2
=
TrainTaskConfig
.
beta2
,
beta2
=
TrainTaskConfig
.
beta2
,
epsilon
=
TrainTaskConfig
.
eps
)
epsilon
=
TrainTaskConfig
.
eps
)
el
if
args
.
sync
==
Fal
se
:
else
:
optimizer
=
fluid
.
optimizer
.
SGD
(
0.003
)
optimizer
=
fluid
.
optimizer
.
SGD
(
0.003
)
optimizer
.
minimize
(
avg_cost
)
optimizer
.
minimize
(
avg_cost
)
...
@@ -596,6 +665,27 @@ def train(args):
...
@@ -596,6 +665,27 @@ def train(args):
train_loop
(
exe
,
train_prog
,
startup_prog
,
dev_count
,
sum_cost
,
avg_cost
,
train_loop
(
exe
,
train_prog
,
startup_prog
,
dev_count
,
sum_cost
,
avg_cost
,
token_num
,
predict
,
pyreader
)
token_num
,
predict
,
pyreader
)
else
:
else
:
if
args
.
update_method
==
"nccl2"
:
trainer_id
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
,
"0"
))
port
=
os
.
getenv
(
"PADDLE_PORT"
)
worker_ips
=
os
.
getenv
(
"PADDLE_TRAINERS"
)
worker_endpoints
=
[]
for
ip
in
worker_ips
.
split
(
","
):
worker_endpoints
.
append
(
':'
.
join
([
ip
,
port
]))
trainers_num
=
len
(
worker_endpoints
)
current_endpoint
=
os
.
getenv
(
"POD_IP"
)
+
":"
+
port
if
trainer_id
==
0
:
logging
.
info
(
"train_id == 0, sleep 60s"
)
time
.
sleep
(
60
)
print
(
"trainers_num:"
,
trainers_num
)
print
(
"worker_endpoints:"
,
worker_endpoints
)
print
(
"current_endpoint:"
,
current_endpoint
)
append_nccl2_prepare
(
trainer_id
,
worker_endpoints
,
current_endpoint
)
train_loop
(
exe
,
fluid
.
default_main_program
(),
dev_count
,
sum_cost
,
avg_cost
,
token_num
,
predict
,
trainers_num
,
trainer_id
)
return
port
=
os
.
getenv
(
"PADDLE_PORT"
,
"6174"
)
port
=
os
.
getenv
(
"PADDLE_PORT"
,
"6174"
)
pserver_ips
=
os
.
getenv
(
"PADDLE_PSERVERS"
)
# ip,ip...
pserver_ips
=
os
.
getenv
(
"PADDLE_PSERVERS"
)
# ip,ip...
eplist
=
[]
eplist
=
[]
...
@@ -605,6 +695,13 @@ def train(args):
...
@@ -605,6 +695,13 @@ def train(args):
trainers
=
int
(
os
.
getenv
(
"PADDLE_TRAINERS_NUM"
,
"0"
))
trainers
=
int
(
os
.
getenv
(
"PADDLE_TRAINERS_NUM"
,
"0"
))
current_endpoint
=
os
.
getenv
(
"POD_IP"
)
+
":"
+
port
current_endpoint
=
os
.
getenv
(
"POD_IP"
)
+
":"
+
port
trainer_id
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
))
trainer_id
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
))
print
(
"pserver_endpoints"
,
pserver_endpoints
)
print
(
"current_endpoint"
,
current_endpoint
)
print
(
"trainer_id"
,
trainer_id
)
print
(
"pserver_ips"
,
pserver_ips
)
print
(
"port"
,
port
)
t
=
fluid
.
DistributeTranspiler
()
t
=
fluid
.
DistributeTranspiler
()
t
.
transpile
(
t
.
transpile
(
trainer_id
,
trainer_id
,
...
@@ -614,6 +711,7 @@ def train(args):
...
@@ -614,6 +711,7 @@ def train(args):
startup_program
=
startup_prog
)
startup_program
=
startup_prog
)
if
training_role
==
"PSERVER"
:
if
training_role
==
"PSERVER"
:
logging
.
info
(
"distributed: pserver started"
)
current_endpoint
=
os
.
getenv
(
"POD_IP"
)
+
":"
+
os
.
getenv
(
current_endpoint
=
os
.
getenv
(
"POD_IP"
)
+
":"
+
os
.
getenv
(
"PADDLE_PORT"
)
"PADDLE_PORT"
)
if
not
current_endpoint
:
if
not
current_endpoint
:
...
@@ -623,23 +721,37 @@ def train(args):
...
@@ -623,23 +721,37 @@ def train(args):
pserver_startup
=
t
.
get_startup_program
(
current_endpoint
,
pserver_startup
=
t
.
get_startup_program
(
current_endpoint
,
pserver_prog
)
pserver_prog
)
print
(
"psserver begin run"
)
print
(
"pserver start:"
)
with
open
(
'pserver_startup.desc'
,
'w'
)
as
f
:
program_to_code
(
pserver_startup
)
f
.
write
(
str
(
pserver_startup
))
print
(
"pserver train:"
)
with
open
(
'pserver_prog.desc'
,
'w'
)
as
f
:
program_to_code
(
pserver_prog
)
f
.
write
(
str
(
pserver_prog
))
#sys.exit(0)
exe
.
run
(
pserver_startup
)
exe
.
run
(
pserver_startup
)
exe
.
run
(
pserver_prog
)
exe
.
run
(
pserver_prog
)
elif
training_role
==
"TRAINER"
:
elif
training_role
==
"TRAINER"
:
logging
.
info
(
"distributed: trainer started"
)
trainer_prog
=
t
.
get_trainer_program
()
trainer_prog
=
t
.
get_trainer_program
()
with
open
(
'trainer_prog.desc'
,
'w'
)
as
f
:
'''
f
.
write
(
str
(
trainer_prog
))
print("trainer start:")
program_to_code(pserver_startup)
print("trainer train:")
program_to_code(trainer_prog)
sys.exit(0)
'''
train_loop
(
exe
,
train_prog
,
startup_prog
,
dev_count
,
sum_cost
,
train_loop
(
exe
,
train_prog
,
startup_prog
,
dev_count
,
sum_cost
,
avg_cost
,
token_num
,
predict
,
pyreader
)
avg_cost
,
token_num
,
predict
,
pyreader
)
else
:
else
:
print
(
"environment var TRAINER_ROLE should be TRAINER os PSERVER"
)
logging
.
critical
(
"environment var TRAINER_ROLE should be TRAINER os PSERVER"
)
exit
(
1
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
LOG_FORMAT
=
"[%(asctime)s %(levelname)s %(filename)s:%(lineno)d] %(message)s"
logging
.
basicConfig
(
stream
=
sys
.
stdout
,
level
=
logging
.
DEBUG
,
format
=
LOG_FORMAT
)
args
=
parse_args
()
args
=
parse_args
()
train
(
args
)
train
(
args
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录