提交 04faec7b 编写于 作者: L likesiwell

fix reamde

上级 4862c7b0
......@@ -109,7 +109,7 @@ def mlp_student(img, drop_prob, h_size):
| StudentNet 30units with 4.0temp soft targets | 97.01% |
训练过程中的测试集准确率如下图所示,可以看到使用soft targets训练的小网络的收敛速度快于不使用soft targets的网络。
![收敛](https://github.com/likesiwell/models/blob/develop/distill_knowledge/images/plots.png)
![收敛](https://github.com/likesiwell/models/blob/distill-branch/distill_knowledge/images/plots.png)
## 参考文献
......
......@@ -110,7 +110,7 @@ When we train the small network with soft targets of temperature 4.0, we get the
| StudentNet 30units with 4.0temp soft targets | 97.01% |
The testing accuracy during training procedure are visualized here. We can see that using soft targets speed up the convergence.
![convergence](https://github.com/likesiwell/models/blob/develop/distill_knowledge/images/plots.png)
![convergence](https://github.com/likesiwell/models/blob/distill-branch/distill_knowledge/images/plots.png)
......
import paddle
import numpy as np
import os
reader = paddle.dataset.mnist.train()
img_list = []
label_list = []
......@@ -23,6 +24,11 @@ test_x = np.vstack(img_list)
test_y = np.vstack(label_list)
print(test_x.shape, test_y.shape)
if not os.path.exits('./data/'):
os.makedirs('./data/')
if not os.path.exits('./models/'):
os.makedirs('./models')
np.savez(
'./data/mnist.npz',
train_x=train_x,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册