Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
03b24f8d
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
03b24f8d
编写于
11月 02, 2018
作者:
X
xuezhong
提交者:
GitHub
11月 02, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1425 from xuezhong/add_ce
Add ce
上级
c2162f5c
0dd43723
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
146 addition
and
16 deletion
+146
-16
fluid/PaddleNLP/machine_reading_comprehension/.run_ce.sh
fluid/PaddleNLP/machine_reading_comprehension/.run_ce.sh
+45
-0
fluid/PaddleNLP/machine_reading_comprehension/_ce.py
fluid/PaddleNLP/machine_reading_comprehension/_ce.py
+68
-0
fluid/PaddleNLP/machine_reading_comprehension/args.py
fluid/PaddleNLP/machine_reading_comprehension/args.py
+4
-0
fluid/PaddleNLP/machine_reading_comprehension/data/download.sh
.../PaddleNLP/machine_reading_comprehension/data/download.sh
+1
-0
fluid/PaddleNLP/machine_reading_comprehension/dataset.py
fluid/PaddleNLP/machine_reading_comprehension/dataset.py
+1
-1
fluid/PaddleNLP/machine_reading_comprehension/run.py
fluid/PaddleNLP/machine_reading_comprehension/run.py
+27
-15
未找到文件。
fluid/PaddleNLP/machine_reading_comprehension/.run_ce.sh
0 → 100644
浏览文件 @
03b24f8d
#!/bin/bash
DATA_PATH
=
./data
if
[
!
-e
$DATA_PATH
/demo
]
;
then
mkdir
-p
$DATA_PATH
/demo
if
[
!
-e
$DATA_PATH
/demo.tgz
]
;
then
cd
$DATA_PATH
wget
-c
--no-check-certificate
http://dureader.gz.bcebos.com/demo.tgz
cd
-
fi
tar
-zxf
$DATA_PATH
/demo.tgz
-C
$DATA_PATH
/demo
fi
train
(){
python
-u
run.py
\
--trainset
'data/demo/search.train.json'
\
--devset
'data/demo/search.dev.json'
\
--testset
'data/demo/search.test.json'
\
--vocab_dir
'data/demo/'
\
--use_gpu
true
\
--save_dir
./models
\
--pass_num
1
\
--learning_rate
0.001
\
--batch_size
32
\
--embed_size
300
\
--hidden_size
150
\
--max_p_num
5
\
--max_p_len
500
\
--max_q_len
60
\
--max_a_len
200
\
--drop_rate
0.2
\
--log_interval
1
\
--enable_ce
\
--train
}
cudaid
=
${
single
:
=0
}
# use 0-th card as default
export
CUDA_VISIBLE_DEVICES
=
$cudaid
train | python _ce.py
cudaid
=
${
multi
:
=0,1,2,3
}
# use 0,1,2,3 card as default
export
CUDA_VISIBLE_DEVICES
=
$cudaid
train | python _ce.py
fluid/PaddleNLP/machine_reading_comprehension/_ce.py
0 → 100644
浏览文件 @
03b24f8d
####this file is only used for continuous evaluation test!
import
os
import
sys
#sys.path.insert(0, os.environ['ceroot'])
from
kpi
import
CostKpi
,
DurationKpi
,
AccKpi
#### NOTE kpi.py should shared in models in some way!!!!
train_cost_card1_kpi
=
CostKpi
(
'train_cost_card1'
,
0.02
,
0
,
actived
=
True
)
test_cost_card1_kpi
=
CostKpi
(
'test_cost_card1'
,
0.005
,
0
,
actived
=
True
)
train_duration_card1_kpi
=
DurationKpi
(
'train_duration_card1'
,
0.06
,
0
,
actived
=
True
)
train_cost_card4_kpi
=
CostKpi
(
'train_cost_card4'
,
0.01
,
0
,
actived
=
True
)
test_cost_card4_kpi
=
CostKpi
(
'test_cost_card4'
,
0.005
,
0
,
actived
=
True
)
train_duration_card4_kpi
=
DurationKpi
(
'train_duration_card4'
,
0.06
,
0
,
actived
=
True
)
tracking_kpis
=
[
train_cost_card1_kpi
,
test_cost_card1_kpi
,
train_duration_card1_kpi
,
train_cost_card4_kpi
,
test_cost_card4_kpi
,
train_duration_card4_kpi
,
]
def
parse_log
(
log
):
'''
This method should be implemented by model developers.
The suggestion:
each line in the log should be key, value, for example:
"
train_cost
\t
1.0
test_cost
\t
1.0
train_cost
\t
1.0
train_cost
\t
1.0
train_acc
\t
1.2
"
'''
for
line
in
log
.
split
(
'
\n
'
):
fs
=
line
.
strip
().
split
(
'
\t
'
)
print
(
fs
)
if
len
(
fs
)
==
3
and
fs
[
0
]
==
'kpis'
:
print
(
"-----%s"
%
fs
)
kpi_name
=
fs
[
1
]
kpi_value
=
float
(
fs
[
2
])
yield
kpi_name
,
kpi_value
def
log_to_ce
(
log
):
kpi_tracker
=
{}
for
kpi
in
tracking_kpis
:
kpi_tracker
[
kpi
.
name
]
=
kpi
for
(
kpi_name
,
kpi_value
)
in
parse_log
(
log
):
print
(
kpi_name
,
kpi_value
)
kpi_tracker
[
kpi_name
].
add_record
(
kpi_value
)
kpi_tracker
[
kpi_name
].
persist
()
if
__name__
==
'__main__'
:
log
=
sys
.
stdin
.
read
()
print
(
"*****"
)
print
(
log
)
print
(
"****"
)
log_to_ce
(
log
)
fluid/PaddleNLP/machine_reading_comprehension/args.py
浏览文件 @
03b24f8d
...
...
@@ -120,5 +120,9 @@ def parse_args():
'--result_name'
,
default
=
'test_result'
,
help
=
'the file name of the results'
)
parser
.
add_argument
(
"--enable_ce"
,
action
=
'store_true'
,
help
=
"If set, run the task with continuous evaluation logs."
)
args
=
parser
.
parse_args
()
return
args
fluid/PaddleNLP/machine_reading_comprehension/data/download.sh
浏览文件 @
03b24f8d
...
...
@@ -21,6 +21,7 @@ if [[ -d preprocessed ]] && [[ -d raw ]]; then
exit
0
else
wget
-c
--no-check-certificate
http://dureader.gz.bcebos.com/dureader_preprocessed.zip
wget
-c
--no-check-certificate
http://dureader.gz.bcebos.com/demo.tgz
fi
if
md5sum
--status
-c
md5sum.txt
;
then
...
...
fluid/PaddleNLP/machine_reading_comprehension/dataset.py
浏览文件 @
03b24f8d
...
...
@@ -152,7 +152,7 @@ class BRCDataset(object):
batch_data
[
'passage_token_ids'
].
append
(
passage_token_ids
)
batch_data
[
'passage_length'
].
append
(
min
(
len
(
passage_token_ids
),
self
.
max_p_len
))
# record the start passage index of current
doc
# record the start passage index of current
sample
passade_idx_offset
=
sum
(
batch_data
[
'passage_num'
])
batch_data
[
'passage_num'
].
append
(
count
)
gold_passage_offset
=
0
...
...
fluid/PaddleNLP/machine_reading_comprehension/run.py
浏览文件 @
03b24f8d
...
...
@@ -248,18 +248,18 @@ def validation(inference_program, avg_cost, s_probs, e_probs, match, feed_order,
n_batch_loss
/
n_batch_cnt
)))
n_batch_loss
=
0.0
n_batch_cnt
=
0
batch_offset
=
0
for
idx
,
batch
in
enumerate
(
batch_list
):
#one batch
batch_size
=
len
(
batch
[
'raw_data'
])
batch_range
=
match_lod
[
0
][
idx
*
batch_size
:(
idx
+
1
)
*
batch_size
+
batch_range
=
match_lod
[
0
][
batch_offset
:
batch_offset
+
batch_size
+
1
]
batch_lod
=
[[
batch_range
[
x
],
batch_range
[
x
+
1
]]
for
x
in
range
(
len
(
batch_range
[:
-
1
]))]
start_prob_batch
=
start_probs_m
[
idx
*
batch_size
:(
idx
+
1
)
*
batch_size
]
end_prob_batch
=
end_probs_m
[
idx
*
batch_size
:(
idx
+
1
)
*
batch_size
]
start_prob_batch
=
start_probs_m
[
batch_offset
:
batch_offset
+
batch_size
+
1
]
end_prob_batch
=
end_probs_m
[
batch_offset
:
batch_offset
+
batch_size
+
1
]
for
sample
,
start_prob_inst
,
end_prob_inst
,
inst_range
in
zip
(
batch
[
'raw_data'
],
start_prob_batch
,
end_prob_batch
,
batch_lod
):
...
...
@@ -284,6 +284,7 @@ def validation(inference_program, avg_cost, s_probs, e_probs, match, feed_order,
'yesno_answers'
:
[]
}
ref_answers
.
append
(
ref
)
batch_offset
=
batch_offset
+
batch_size
result_dir
=
args
.
result_dir
result_prefix
=
args
.
result_name
...
...
@@ -346,8 +347,9 @@ def train(logger, args):
# build model
main_program
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
main_program
.
random_seed
=
args
.
random_seed
startup_prog
.
random_seed
=
args
.
random_seed
if
args
.
enable_ce
:
main_program
.
random_seed
=
args
.
random_seed
startup_prog
.
random_seed
=
args
.
random_seed
with
fluid
.
program_guard
(
main_program
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
avg_cost
,
s_probs
,
e_probs
,
match
,
feed_order
=
rc_model
.
rc_model
(
...
...
@@ -405,7 +407,10 @@ def train(logger, args):
for
pass_id
in
range
(
1
,
args
.
pass_num
+
1
):
pass_start_time
=
time
.
time
()
pad_id
=
vocab
.
get_id
(
vocab
.
pad_token
)
train_reader
=
lambda
:
brc_data
.
gen_mini_batches
(
'train'
,
args
.
batch_size
,
pad_id
,
shuffle
=
False
)
if
args
.
enable_ce
:
train_reader
=
lambda
:
brc_data
.
gen_mini_batches
(
'train'
,
args
.
batch_size
,
pad_id
,
shuffle
=
False
)
else
:
train_reader
=
lambda
:
brc_data
.
gen_mini_batches
(
'train'
,
args
.
batch_size
,
pad_id
,
shuffle
=
True
)
train_reader
=
read_multiple
(
train_reader
,
dev_count
)
log_every_n_batch
,
n_batch_loss
=
args
.
log_interval
,
0
total_num
,
total_loss
=
0
,
0
...
...
@@ -420,6 +425,8 @@ def train(logger, args):
n_batch_loss
+=
cost_train
total_loss
+=
cost_train
*
args
.
batch_size
*
dev_count
if
args
.
enable_ce
and
batch_id
>=
100
:
break
if
log_every_n_batch
>
0
and
batch_id
%
log_every_n_batch
==
0
:
print_para
(
main_program
,
parallel_executor
,
logger
,
args
)
...
...
@@ -464,6 +471,14 @@ def train(logger, args):
executor
=
exe
,
dirname
=
model_path
,
main_program
=
main_program
)
if
args
.
enable_ce
:
# For CE
print
(
"kpis
\t
train_cost_card%d
\t
%f"
%
(
dev_count
,
total_loss
/
total_num
))
if
brc_data
.
dev_set
is
not
None
:
print
(
"kpis
\t
test_cost_card%d
\t
%f"
%
(
dev_count
,
eval_loss
))
print
(
"kpis
\t
train_duration_card%d
\t
%f"
%
(
dev_count
,
time_consumed
))
def
evaluate
(
logger
,
args
):
...
...
@@ -481,8 +496,6 @@ def evaluate(logger, args):
# build model
main_program
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
main_program
.
random_seed
=
args
.
random_seed
startup_prog
.
random_seed
=
args
.
random_seed
with
fluid
.
program_guard
(
main_program
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
avg_cost
,
s_probs
,
e_probs
,
match
,
feed_order
=
rc_model
.
rc_model
(
...
...
@@ -530,8 +543,6 @@ def predict(logger, args):
# build model
main_program
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
main_program
.
random_seed
=
args
.
random_seed
startup_prog
.
random_seed
=
args
.
random_seed
with
fluid
.
program_guard
(
main_program
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
avg_cost
,
s_probs
,
e_probs
,
match
,
feed_order
=
rc_model
.
rc_model
(
...
...
@@ -599,8 +610,9 @@ def prepare(logger, args):
if
__name__
==
'__main__'
:
args
=
parse_args
()
random
.
seed
(
args
.
random_seed
)
np
.
random
.
seed
(
args
.
random_seed
)
if
args
.
enable_ce
:
random
.
seed
(
args
.
random_seed
)
np
.
random
.
seed
(
args
.
random_seed
)
logger
=
logging
.
getLogger
(
"brc"
)
logger
.
setLevel
(
logging
.
INFO
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录